Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Apr 1;25(1):117–137. doi: 10.1083/jcb.25.1.117

A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION

A Van Harreveld 1, Jane Crowell 1, S K Malhotra 1
PMCID: PMC2106613  PMID: 14283623

Abstract

It was attempted to preserve the water distribution in central nervous tissue by rapid freezing followed by substitution fixation at low temperature. The vermis of the cerebellum of white mice was frozen by bringing it into contact with a polished silver mirror maintained at a temperature of about -207°C. The tissue was subjected to substitution fixation in acetone containing 2 per cent OsO4 at -85°C for 2 days, and then prepared for electron microscopy by embedding in Maraglas, sectioning, and staining with lead citrate or uranyl acetate and lead. Cerebellum frozen within 30 seconds of circulatory arrest was compared with cerebellum frozen after 8 minutes' asphyxiation. From impedance measurements under these conditions, it could be expected that in the former tissue the electrolyte and water distribution is similar to that in the normal, oxygenated cerebellum, whereas in the asphyxiated tissue a transport of water and electrolytes into the intracellular compartment has taken place. Electron micrographs of tissue frozen shortly after circulatory arrest revealed the presence of an appreciable extracellular space between the axons of granular layer cells. Between glia, dendrites, and presynaptic endings the usual narrow clefts and even tight junctions were found. Also the synaptic cleft was of the usual width (250 to 300 A). In asphyxiated tissue, the extracellular space between the axons is either completely obliterated (tight junctions) or reduced to narrow clefts between apposing cell surfaces.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN J. N. Extracellular space in the central nervous system. AMA Arch Neurol Psychiatry. 1955 Feb;73(2):241–248. doi: 10.1001/archneurpsyc.1955.02330080119021. [DOI] [PubMed] [Google Scholar]
  2. APRISON M. H., LUKENBILL A., SEGAR W. E. Sodium, potassium, chloride and water content of six discrete parts of the mammalian brain. J Neurochem. 1960 Feb;5:150–155. doi: 10.1111/j.1471-4159.1960.tb13348.x. [DOI] [PubMed] [Google Scholar]
  3. DAVSON H., SPAZIANI E. The blood-brain barrier and the extracellular space of brain. J Physiol. 1959 Dec;149:135–143. doi: 10.1113/jphysiol.1959.sp006330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FIFKOVA E., BURES J., KOSHTOYANTS O. K., KRIVANEK J., WEISS T. Leao's spreading depression in the cerebellum of rat. Experientia. 1961 Dec 15;17:572–573. doi: 10.1007/BF02156433. [DOI] [PubMed] [Google Scholar]
  6. FREEMAN J. A., SPURLOCK B. O. A new epoxy embedment for electron microscopy. J Cell Biol. 1962 Jun;13:437–443. doi: 10.1083/jcb.13.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FREYGANG W. H., Jr, LANDAU W. M. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol. 1955 Jun;45(3):377–392. doi: 10.1002/jcp.1030450305. [DOI] [PubMed] [Google Scholar]
  8. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRAY E. G. The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat. 1961 Jul;95:345–356. [PMC free article] [PubMed] [Google Scholar]
  10. KARLSSON U., SCHULTZ R. PLASMA MEMBRANE APPOSITION IN THE CENTRAL NERVOUS SYSTEM AFTER ALDEHYDE PERFUSION. Nature. 1964 Mar 21;201:1230–1231. doi: 10.1038/2011230a0. [DOI] [PubMed] [Google Scholar]
  11. MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OCHS S., VAN HARREVELD A. Cerebral impedance changes after circulatory arrest. Am J Physiol. 1956 Sep;187(1):180–192. doi: 10.1152/ajplegacy.1956.187.1.180. [DOI] [PubMed] [Google Scholar]
  13. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RANCK J. B., Jr Specific impedance of rabbit cerebral cortex. Exp Neurol. 1963 Feb;7:144–152. doi: 10.1016/s0014-4886(63)80005-9. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RHOTON A., GOLDRING S., O'LEARY J. L. Comparison of direct cerebral and cerebellar cortical responses in the cat. Am J Physiol. 1960 Oct;199:677–682. doi: 10.1152/ajplegacy.1960.199.4.677. [DOI] [PubMed] [Google Scholar]
  18. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  19. ROBERTSON J. D. Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J Biophys Biochem Cytol. 1958 Jul 25;4(4):349–364. doi: 10.1083/jcb.4.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHULTZ R. L. MACROGLIAL IDENTIFICATION IN ELECTRON MICROGRAPHS. J Comp Neurol. 1964 Apr;122:281–295. doi: 10.1002/cne.901220210. [DOI] [PubMed] [Google Scholar]
  21. SMITH K. R., Jr THE CEREBELLAR CORTEX OF THE RABBIT. AN ELECTRON MICROSCOPIC STUDY. J Comp Neurol. 1963 Dec;121:459–483. doi: 10.1002/cne.901210312. [DOI] [PubMed] [Google Scholar]
  22. VAN HARREVELD A. Asphyxial changes in the cerebellar cortex. J Cell Comp Physiol. 1961 Apr;57:101–110. doi: 10.1002/jcp.1030570207. [DOI] [PubMed] [Google Scholar]
  23. VAN HARREVELD A. Changes in volume of cortical neuronal elements during asphyxiation. Am J Physiol. 1957 Nov;191(2):233–242. doi: 10.1152/ajplegacy.1957.191.2.233. [DOI] [PubMed] [Google Scholar]
  24. VAN HARREVELD A., MURPHY T., NOBEL K. W. Specific impedance of rabbit's cortical tissue. Am J Physiol. 1963 Jul;205:203–207. doi: 10.1152/ajplegacy.1963.205.1.203. [DOI] [PubMed] [Google Scholar]
  25. VAN HARREVELD A., SCHADE J. P. Chloride movements in cerebral cortex after circulatory arrest and during spreading depression. J Cell Comp Physiol. 1959 Aug;54:65–84. doi: 10.1002/jcp.1030540108. [DOI] [PubMed] [Google Scholar]
  26. VAN HARREVELD A. Water and electrolyte distribution in central nervous tissue. Fed Proc. 1962 May-Jun;21:659–664. [PubMed] [Google Scholar]
  27. VANHARREVELD A., BIERSTEKER P. A. ACUTE ASPHYXIATION OF THE SPINAL CORD AND OF OTHER SECTIONS OF THE NERVOUS SYSTEM. Am J Physiol. 1964 Jan;206:8–14. doi: 10.1152/ajplegacy.1964.206.1.8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES