Abstract
Liver microsomes, isolated from rats which had been treated with phenobarbital in vivo, were found to exhibit increased activities of oxidative demethylation and TPNH-cytochrome c reductase and an increased amount of CO-binding pigment. Simultaneous administration of actinomycin D or puromycin abolished the phenobarbital-induced enzyme synthesis. Increased rate of Pi 32 incorporation into microsomal phospholipid was the first sign of phenobarbital stimulation and appeared 3 hours after a single injection of this drug. Microsomes were divided into smooth-surfaced and rough-surfaced vesicle fractions. The fraction consisting of smooth-surfaced vesicles exhibited the greatest increase in protein content and oxidative demethylation activity after phenobarbital administration in vivo. Ultrastructural studies revealed that drug treatment also gave rise to proliferation of the endoplasmic reticulum in the hepatic parenchymal cells, first noticed after two phenobarbital injections. The phenobarbital-induced synthesis of the metabolizing enzymes is discussed with special reference to the relationship to the stimulated synthesis of the endoplasmic membranes.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT H. S., LUFT J. H. zeta-Collidine as a basis for buffering fixatives. J Biophys Biochem Cytol. 1959 Aug;6(1):113–114. doi: 10.1083/jcb.6.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRODIE B. B., GILLETTE J. R., LA DU B. N. Enzymatic metabolism of drugs and other foreign compounds. Annu Rev Biochem. 1958;27(3):427–454. doi: 10.1146/annurev.bi.27.070158.002235. [DOI] [PubMed] [Google Scholar]
- CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
- CONNEY A. H., DAVISON C., GASTEL R., BURNS J. J. Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther. 1960 Sep;130:1–8. [PubMed] [Google Scholar]
- CONNEY A. H., GILMAN A. G. PUROMYCIN INHIBITION OF ENZYME INDUCTION BY 3-METHYLCHOLANTHRENE AND PHENOBARBITAL. J Biol Chem. 1963 Nov;238:3682–3685. [PubMed] [Google Scholar]
- CONNEY A. H., MILLER E. C., MILLER J. A. Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J Biol Chem. 1957 Oct;228(2):753–766. [PubMed] [Google Scholar]
- ERICSSON J. L., TRUMP B. F. ELECTRON MICROSCOPIC STUDIES OF THE EPITHELIUM OF THE PROXIMAL TUBULE OF THE RAT KIDNEY. I. THE INTRACELLULAR LOCALIZATION OF ACID PHOSPHATASE. Lab Invest. 1964 Nov;13:1427–1456. [PubMed] [Google Scholar]
- ERNSTER L., LOW H. Reconstruction of oxidative phosphorylation in aged mitochondrial systems. Exp Cell Res. 1955;(Suppl 3):133–153. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- GELBOIN H. V., BLACKBURN N. R. THE STIMULATORY EFFECT OF 3-METHYLCHOLANTHRENE ON MICROSOMAL AMINO ACID INCORPORATION AND BENZPYRENE HYDROXYLASE ACTIVITY AND ITS INHIBITION BY ACTINOMYCIN D. Biochim Biophys Acta. 1963 Aug 20;72:657–660. [PubMed] [Google Scholar]
- GELBOIN H. V., SOKOLOFF L. Effects of 3-methylcholanthrene and phenobarbital on amino acid incorporation into protein. Science. 1961 Sep 1;134(3479):611–612. doi: 10.1126/science.134.3479.611. [DOI] [PubMed] [Google Scholar]
- GILLETTE J. R., BRODIE B. B., LA DU B. N. The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. J Pharmacol Exp Ther. 1957 Apr;119(4):532–540. [PubMed] [Google Scholar]
- GOLDBERG I. H., RABINOWITZ M. Actionmycin D inhibition of deoxyribonucleic acid-dependent synthesis of ribonucleic acid. Science. 1962 Apr 27;136(3513):315–316. doi: 10.1126/science.136.3513.315. [DOI] [PubMed] [Google Scholar]
- HURWITZ J., FURTH J. J., MALAMY M., ALEXANDER M. The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1222–1230. doi: 10.1073/pnas.48.7.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATO R., CHIESARA E., VASSANELLI P. Increased activity of microsomal strychnine-metabolizing enzyme induced by phenobarbital and other drugs. Biochem Pharmacol. 1962 Oct;11:913–922. doi: 10.1016/0006-2952(62)90140-5. [DOI] [PubMed] [Google Scholar]
- KLINGENBERG M. Pigments of rat liver microsomes. Arch Biochem Biophys. 1958 Jun;75(2):376–386. doi: 10.1016/0003-9861(58)90436-3. [DOI] [PubMed] [Google Scholar]
- King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORRIS A., FAVELUKES S., ARLINGHAUS R., SCHWEET R. Mechanism of puromycin inhibition of hemoglobin synthesis. Biochem Biophys Res Commun. 1962 May 4;7:326–330. doi: 10.1016/0006-291x(62)90201-2. [DOI] [PubMed] [Google Scholar]
- NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orrenius S., Dallner G., Ernster L. Inhibition of the TPNH-linked lipid peroxidation of liver microsomes by drugs undergoing oxidative demethylation. Biochem Biophys Res Commun. 1964;14:329–334. doi: 10.1016/s0006-291x(64)80005-x. [DOI] [PubMed] [Google Scholar]
- Orrenius S., Ernster L. Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes. Biochem Biophys Res Commun. 1964 May 22;16(1):60–65. doi: 10.1016/0006-291x(64)90211-6. [DOI] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
- REMMER H., MERKER H. J. DRUG-INDUCED CHANGES IN THE LIVER ENDOPLASMIC RETICULUM: ASSOCIATION WITH DRUG-METABOLIZING ENZYMES. Science. 1963 Dec 27;142(3600):1657–1658. doi: 10.1126/science.142.3600.1657. [DOI] [PubMed] [Google Scholar]
- REMMER H., MERKER H. J. [Enzyme induction and increase of endoplasmic reticulum in liver cells during phenobarbital (Luminal) therapy]. Klin Wochenschr. 1963 Mar 15;41:276–282. doi: 10.1007/BF01483392. [DOI] [PubMed] [Google Scholar]
- SALAS M., VINUELA E., SOLS A. INSULIN-DEPENDENT SYNTHESIS OF LIVER GLUCOKINASE IN THE RAT. J Biol Chem. 1963 Nov;238:3535–3538. [PubMed] [Google Scholar]
- STANIER R. Y. Enzymatic adaptation in bacteria. Annu Rev Microbiol. 1951;5:35–56. doi: 10.1146/annurev.mi.05.100151.000343. [DOI] [PubMed] [Google Scholar]
- WILLIAMS C. H., Jr, KAMIN H. Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem. 1962 Feb;237:587–595. [PubMed] [Google Scholar]