Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Jul 1;26(1):49–62. doi: 10.1083/jcb.26.1.49

PROTEIN UPTAKE IN THE OOCYTES OF THE CECROPIA MOTH

Barbara Stay 1
PMCID: PMC2106701  PMID: 5892960

Abstract

The formation of yolk spheres in the oocyte of the cecropia moth, Hyalophora cecropia (L.), is known immunologically to result largely from uptake of a sex-limited blood protein. Recent electron microscope analyses of insect and other animal oocytes have demonstrated fine structural configurations consistent with uptake of proteins by pinocytosis. An electron microscope analysis of the cecropia ovary confirms the presence of similar structural modifications. With the exception of two apparently amorphous layers, the basement lamella on the outer surface of the follicular epithelium and the vitelline membrane on the inner, there is free access of blood to the oocyte surface between follicle cells. Dense material is found in the interfollicular cell space and adsorbed to the outer surface of the much folded oocyte membrane. Pits in the oocyte membrane and vesicles immediately under it are lined with the same dense material not unlike the yolk spheres in appearance. Introduction of ferritin into the blood of a developing cecropia moth and its localization adsorbed to the surface of the oocyte, and within the vesicles and yolk spheres of the oocyte cortex, is experimental evidence that the structural modifications of the oocyte cortex represent stages in the pinocytosis of blood proteins which arrive at the oocyte surface largely by an intercellular route. Small tubules attached to the yolk spheres are provisionally interpreted as a manifestation of oocyte-synthesized protein being contributed to the yolk spheres.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E. OOCYTE DIFFERENTIATION AND VITELLOGENESIS IN THE ROACH PERIPLANETA AMERICANA. J Cell Biol. 1964 Jan;20:131–155. doi: 10.1083/jcb.20.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEAMS H. W., KESSEL R. G. ELECTRON MICROSCOPE STUDIES ON DEVELOPING CRAYFISH OOCYTES WITH SPECIAL REFERENCE TO THE ORIGIN OF YOLK. J Cell Biol. 1963 Sep;18:621–649. doi: 10.1083/jcb.18.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HOPE J., HUMPHRIES A. A., Jr, BOURNE G. H. ULTRASTRUCTURAL STUDIES ON DEVELOPING OOCYTES OF THE SALAMANDER TRITURUS VIRIDESCENS. I. THE RELATIONSHIP BETWEEN FOLLICLE CELLS AND DEVELOPING OOCYTES. J Ultrastruct Res. 1963 Oct;59:302–324. doi: 10.1016/s0022-5320(63)80009-x. [DOI] [PubMed] [Google Scholar]
  4. RAMAMURTY P. S. ON THE CONTRIBUTION OF THE FOLLICLE EPITHELIUM TO THE DEPOSITION OF YOLK IN THE OOCYTE OF PANORPA COMMUNIS (MECOPTERA). Exp Cell Res. 1964 Feb;33:601–605. doi: 10.1016/0014-4827(64)90031-x. [DOI] [PubMed] [Google Scholar]
  5. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. TELFER W. H. Immunological studies of insect metamorphosis. II. The role of a sex-limited blood protein in egg formation by the Cecropia silkworm. J Gen Physiol. 1954 Mar;37(4):539–558. doi: 10.1085/jgp.37.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. TELFER W. H. The route of entry and localization of blood proteins in the oocytes of saturniid moths. J Biophys Biochem Cytol. 1961 Apr;9:747–759. doi: 10.1083/jcb.9.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WARD R. T. The origin of protein and fatty yolk in Rana pipiens. II. Electron microscopical and cytochemical observations of young and mature oocytes. J Cell Biol. 1962 Aug;14:309–341. doi: 10.1083/jcb.14.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES