Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Aug 1;26(2):621–640. doi: 10.1083/jcb.26.2.621

MECHANISM OF SUPERCONTRACTION IN A STRIATED MUSCLE

Graham Hoyle 1, James H McAlear 1, Allen Selverston 1
PMCID: PMC2106744  PMID: 5865940

Abstract

The phenomenon of contraction of a striated muscle down to below 50 per cent rest length has been examined for the scutal depressor of the barnacle Balanus nubilus by a combination of phase contrast and electron microscopy. It was found that neurally evoked contraction down to 60 per cent rest length results from the shortening of the I band. At the same time the Z disc changes in structure by an active process which results in spaces opening up within it. Thick filaments can now pass through these spaces from adjacent sarcomeres, interdigitating across the discs. Interdigitation permits repetitive contraction in the living muscle to below 30 per cent rest length. In non-neurally evoked contractions most thick filaments do not find spaces in the Z disc and bend back, giving rise to contraction band artifacts. Expansion of the Z disc can be produced in glycerinated material by the addition of solutions containing a high concentration of ATP.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON J. OVERLAP OF THE BIREFRINGENT COMPONENT OF ADJACENT A REGIONS DURING THE INDUCED SHORTENING OF FIBRILS TEASED FROM DROSOPHILA MUSCLE. J Cell Biol. 1963 Oct;19:107–114. doi: 10.1083/jcb.19.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIES R. E. A MOLECULAR THEORY OF MUSCLE CONTRACTION: CALCIUM-DEPENDENT CONTRACTIONS WITH HYDROGEN BOND FORMATION PLUS ATP-DEPENDENT EXTENSIONS OF PART OF THE MYOSIN-ACTIN CROSS-BRIDGES. Nature. 1963 Sep 14;199:1068–1074. doi: 10.1038/1991068a0. [DOI] [PubMed] [Google Scholar]
  3. DEVILLAFRANCA G. W., MARSCHHAUS C. E. CONTRACTION OF THE A BAND. J Ultrastruct Res. 1963 Aug;49:156–165. doi: 10.1016/s0022-5320(63)80043-x. [DOI] [PubMed] [Google Scholar]
  4. HODGE A. J. The fine structure of striated muscle; a comparison of insect flight muscle with vertebrate and invertebrate skeletal muscle. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):131–142. doi: 10.1083/jcb.2.4.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOYLE G., SMYTH T., Jr NEUROMUSCULAR PHYSIOLOGY OF GIANT MUSCLE FIBERS OF A BARNACLE, BALANUS NUBILUS DARWIN. Comp Biochem Physiol. 1963 Dec;10:291–314. doi: 10.1016/0010-406x(63)90229-9. [DOI] [PubMed] [Google Scholar]
  6. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY H. E. The contractile structure of cardiac and skeletal muscle. Circulation. 1961 Aug;24:328–335. doi: 10.1161/01.cir.24.2.328. [DOI] [PubMed] [Google Scholar]
  8. HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  10. Hoyle G., McAlear J. H. Mechanism of Supercontraction in a Striated Muscle Fiber. Science. 1963 Aug 23;141(3582):712–713. doi: 10.1126/science.141.3582.712. [DOI] [PubMed] [Google Scholar]
  11. MARK J. S. An electron microscope study of uterine smooth muscle. Anat Rec. 1956 Jul;125(3):473–493. doi: 10.1002/ar.1091250306. [DOI] [PubMed] [Google Scholar]
  12. SMITH D. S. The organization of the flight muscle in a dragonfly, Aeshna sp. (Odonata). J Biophys Biochem Cytol. 1961 Oct;11:119–145. doi: 10.1083/jcb.11.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES