Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Sep 1;26(3):687–691. doi: 10.1083/jcb.26.3.687

STUDIES ON THE ORGANIZATION OF THE BRUSH BORDER IN INTESTINAL EPITHELIAL CELLS

I. Tris Disruption of Isolated Hamster Brush Borders and Density Gradient Separation of Fractions

Alexander Eichholz 1, Robert K Crane 1
PMCID: PMC2106781  PMID: 19866671

Abstract

Brush borders isolated from the epithelial cells of hamster jejunum have been dissociated by treatment with 1 M Tris(hydroxymethyl)aminomethane into several subfractions which can be separated by means of centrifugation on glycerol density gradients. Investigation of the chemical specificity of disrupting agents suggests that the amino group of Tris, in its positively charged state, is involved. Five individual bands or fractions have been routinely recovered from density gradients. The distribution of alkaline phosphatase and maltase activities among these fractions has been studied and the results indicate that both enzymes are predominantly associated with one fraction which has been identified in a companion paper as being composed of the membranes of the brush border microvilli. A fibrillar material of unidentified origin has also been obtained from Tris-disrupted brush borders.

Full Text

The Full Text of this article is available as a PDF (334.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLARK S. L., Jr The localization of alkaline phosphatase in tissues of mice, using the electron microscope. Am J Anat. 1961 Jul;109:57–83. doi: 10.1002/aja.1001090106. [DOI] [PubMed] [Google Scholar]
  2. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  3. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  4. HOLT J. H., MILLER D. The localization of phosphomonoesterase and aminopeptidase in brush borders isolated from intestinal epithelial cells. Biochim Biophys Acta. 1962 Apr 9;58:239–243. doi: 10.1016/0006-3002(62)91004-1. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. MILLER D., CRANE R. K. A procedure for the isolation of the epithelial brush border membrane of hamster small intestine. Anal Biochem. 1961 Jun;2:284–286. doi: 10.1016/s0003-2697(61)80014-6. [DOI] [PubMed] [Google Scholar]
  7. MILLER D., CRANE R. K. The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta. 1961 Sep 16;52:293–298. doi: 10.1016/0006-3002(61)90678-3. [DOI] [PubMed] [Google Scholar]
  8. NACHLAS M. M., MONIS B., ROSENBATT D., SELIGMAN A. M. Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol. 1960 Apr;7:261–264. doi: 10.1083/jcb.7.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. NEWEY H., SANFORD P. A., SMYTH D. H. LOCATION OF FUNCTION IN THE INTESTINAL EPITHELIAL CELL IN RELATION TO CARBOHYDRATE ABSORPTION. J Physiol. 1963 Sep;168:423–434. doi: 10.1113/jphysiol.1963.sp007200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TAYLOR C. B. Cation-stimulation of an ATPase system from the intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1962 Jul 2;60:437–440. doi: 10.1016/0006-3002(62)90429-8. [DOI] [PubMed] [Google Scholar]
  11. WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES