Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Oct 1;27(1):163–177. doi: 10.1083/jcb.27.1.163

PASSAGE OF LIPID ACROSS VASCULAR ENDOTHELIUM IN NEWBORN RATS

An Electron Microscopic Study

Elsi R Suter 1, Guido Majno 1
PMCID: PMC2106804  PMID: 5857252

Abstract

An electron microscopic study of the fine blood vessels in the skin and muscle of 25 newborn rats (sucklings, and therefore subject to physiologic lipemia) has shown that blood-borne lipid particles may leave the lumen of these vessels by two pathways, intercellular and intracellular. (a) An intercellular pathway: Some capillaries, venous capillaries and venules contain intramural, extracellular deposits of lipid which is presumably hematogenous. In some animals these deposits are quite numerous; available evidence suggests that they are a consequence of intercellular gaps, too small or too transient to be observed except in rare instances. Plasma apparently escapes through these gaps and filters across the basement membrane, while lipid particles are retained, usually in sufficient number to fill the small defect; some lipid particles are then taken up by endothelial cells and pericytes, while a few escape and are incorporated into free phagocytes. These focal defects, though few in number, may explain the apparent incapacity of blood vessels of newborn rats to leak any further after a local injection of histamine. Discontinuities in the endothelium were found also in the renal glomerulus, sometimes accompanied by extensive interstitial accumulations of lipid particles. Similar intercellular gaps are known to exist in other types of immature endothelia. (b) An intracellular pathway: This is best demonstrated in the capillaries, venous capillaries and venules which supply the developing subcutaneous adipose tissue. Here the lipid particles adhere in large numbers to the endothelial surface; the morphologic evidence suggests that they are also taken up into the endothelium through phagocytosis by "flaps," or into pockets or crevices. The lipid is apparently metabolized in the vascular wall; some is found in the multivesicular bodies. There was no evidence of active transport by vesicles or vacuoles. Neither pathway was demonstrable in the adult.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CASLEY-SMITH J. R. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J Cell Biol. 1962 Nov;15:259–277. doi: 10.1083/jcb.15.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COTRAN R. S., MAJNO G. A LIGHT AND ELECTRON MICROSCOPIC ANALYSIS OF VASCULAR INJURY. Ann N Y Acad Sci. 1964 Aug 27;116:750–764. doi: 10.1111/j.1749-6632.1964.tb52543.x. [DOI] [PubMed] [Google Scholar]
  3. COTRAN R. S. THE DELAYED AND PROLONGED VASCULAR LEAKAGE IN INFLAMMATION. II. AN ELECTRON MICROSCOPIC STUDY OF THE VASCULAR RESPONSE AFTER THERMAL INJURY. Am J Pathol. 1965 Apr;46:589–620. [PMC free article] [PubMed] [Google Scholar]
  4. COURTICE G. C., MORRIS B. The exchange of lipids between plasma and lymph of animals. Q J Exp Physiol Cogn Med Sci. 1955 Apr;40(2):138–148. doi: 10.1113/expphysiol.1955.sp001105. [DOI] [PubMed] [Google Scholar]
  5. DONAHUE S. A RELATIONSHIP BETWEEN FINE STRUCTURE AND FUNCTION OF BLOOD VESSELS IN THE CENTRAL NERVOUS SYSTEM OF RABBIT FETUSES. Am J Anat. 1964 Jul;115:17–26. doi: 10.1002/aja.1001150103. [DOI] [PubMed] [Google Scholar]
  6. FRIEDMAN M., BYERS S. O. EXCESS LIPID LEAKAGE: A PROPERTY OF VERY YOUNG VASCULAR ENDOTHELIUM. Br J Exp Pathol. 1962 Aug;43:363–372. [PMC free article] [PubMed] [Google Scholar]
  7. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KAY D., ROBINSON D. S. The structure of chylomicra obtained from the thoracic duct of the rat. Q J Exp Physiol Cogn Med Sci. 1962 Jul;47:258–261. doi: 10.1113/expphysiol.1962.sp001605. [DOI] [PubMed] [Google Scholar]
  9. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PARSONS D. F. A simple method for obtaining increased contrast in araldite sections by using postfixation staining of tissues with potassium permanganate. J Biophys Biochem Cytol. 1961 Nov;11:492–497. doi: 10.1083/jcb.11.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. TROTTER N. L. A FINE STRUCTURE STUDY OF LIPID IN MOUSE LIVER REGENERATING AFTER PARTIAL HEPATECTOMY. J Cell Biol. 1964 May;21:233–244. doi: 10.1083/jcb.21.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WASSERMANN F., McDONALD T. F. Electron microscopic study of adipose tissue (fat organs) with special reference to the transport of lipids between blood and fat cells. Z Zellforsch Mikrosk Anat. 1963;59:326–357. doi: 10.1007/BF00339791. [DOI] [PubMed] [Google Scholar]
  15. WILLIAMSON J. R. ADIPOSE TISSUE. MORPHOLOGICAL CHANGES ASSOCIATED WITH LIPID MOBILIZATION. J Cell Biol. 1964 Jan;20:57–74. doi: 10.1083/jcb.20.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES