Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1965 Oct 1;27(1):1–24. doi: 10.1083/jcb.27.1.1

ON THE DIFFERENTIAL RESPONSE OF SARCOPLASM AND MYOPLASM TO DENERVATION IN FROG MUSCLE

Umberto Muscatello 1, Alfredo Margreth 1, Massimo Aloisi 1
PMCID: PMC2106810  PMID: 5857256

Abstract

Electron microscopic evidence is presented that the early response to denervation ("simple atrophy") of the semitendinosus m. of the frog is characterized by a greater prominence of the sarcoplasmic reticulum and by the presence, in the interfibrillar spaces, of mitochondria which are more numerous and smaller than in normal muscle. In contrast with the dynamic changes of the sarcoplasmic structural components, the myofibrils showed a progressive decrease in diameter after denervation and throughout the period studied. By carrying out tissue fractionation experiments, the yield of microsome-protein was found significantly greater in the denervated muscles, as compared with the contralateral controls, in this initial stage. Under the conditions attending the overdevelopment of the sarcoplasmic reticulum (SR), denervated semitendinosus m. incorporated valine-C14 into proteins more actively than the control pairs. The denervated muscles also showed an increase in the number of freely scattered and membrane-bound ribosomes and of polyribosomes, suggesting a more active synthesis of the SR membranes. Pronounced atrophy of the myofibrils, disorganization of the SR, and an increased number of ribonucleoprotein particles lying in the enlarged interfibrillar spaces were the main ultrastructural features of "degenerative atrophy" in frog muscle in the late periods after denervation. The probably adaptive character of the early changes occurring on denervation of frog muscle is discussed.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALOISI M., AZZONE G. F., CARAFOLI E. [Lesions of pigeon muscle mitochondria in avitaminosis B1 and denervation atrophy]. Arch De Vecchi Anat Patol. 1960 Jun;32:33–83. [PubMed] [Google Scholar]
  2. ANDERSSON-CEDERGREN E., MUSCATELLO U. The participation of the sarcotubular system in glycogen metabolism. J Ultrastruct Res. 1963 Apr;8:391–401. doi: 10.1016/s0022-5320(63)90015-7. [DOI] [PubMed] [Google Scholar]
  3. BENNETT H. S., PORTER K. R. An electron microscope study of sectioned breast muscle of the domestic fowl. Am J Anat. 1953 Jul;93(1):61–105. doi: 10.1002/aja.1000930104. [DOI] [PubMed] [Google Scholar]
  4. BIAVA C. IDENTIFICATION AND STRUCTURAL FORMS OF HUMAN PARTICULATE GLYCOGEN. Lab Invest. 1963 Dec;12:1179–1197. [PubMed] [Google Scholar]
  5. BIRKS R., KATZ B., MILEDI R. Dissociation of the 'surface membrane complex' in atrophic muscle fibres. Nature. 1959 Nov 7;184(Suppl 19):1507–1508. doi: 10.1038/1841507a0. [DOI] [PubMed] [Google Scholar]
  6. CARAFOLI E., MARGRETH A., BUFFA P. Biochemical changes in pigeon breast muscle mitochondria following nerve section. Nature. 1962 Dec 15;196:1101–1102. doi: 10.1038/1961101a0. [DOI] [PubMed] [Google Scholar]
  7. CARAFOLI E., MARGRETH A., BUFFA P. EARLY BIOCHEMICAL CHANGES IN MITOCHONDRIA FROM DENERVATED MUSCLE AND THEIR RELATION TO THE ONSET OF ATROPHY. Exp Mol Pathol. 1964 Apr;34:171–181. doi: 10.1016/0014-4800(64)90050-4. [DOI] [PubMed] [Google Scholar]
  8. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANZINIARMSTRONG C. SARCOLEMMAL INVAGINATIONS AND THE T-SYSTEM IN FISH SKELETAL MUSCLE. Nature. 1964 Apr 25;202:355–357. doi: 10.1038/202355a0. [DOI] [PubMed] [Google Scholar]
  10. GIERER A. Function of aggregated reticulocyte ribosomes in protein synthesis. J Mol Biol. 1963 Feb;6:148–157. doi: 10.1016/s0022-2836(63)80131-x. [DOI] [PubMed] [Google Scholar]
  11. GIESEKING R. [Submicroscopic changes in skeletal muscle fibers in starvation atrophy]. Frankf Z Pathol. 1962;71:584–599. [PubMed] [Google Scholar]
  12. HARRIS E. J., NICHOLLS J. G. The effect of denervation on the rate of entry of potassium into frog muscle. J Physiol. 1956 Feb 28;131(2):473–476. doi: 10.1113/jphysiol.1956.sp005476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HARTSHORNE D. J., PERRY S. V. A chromatographic and electrophoretic study of sarcoplasm from adult--and foetal-rabbit muscles. Biochem J. 1962 Oct;85:171–177. doi: 10.1042/bj0850171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HELANDER E. Adaptive muscular allomorphism. Nature. 1958 Oct 11;182(4641):1035–1036. doi: 10.1038/1821035a0. [DOI] [PubMed] [Google Scholar]
  15. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  16. KIELLEY W. W. THE BIOCHEMISTRY OF MUSCLE. Annu Rev Biochem. 1964;33:403–430. doi: 10.1146/annurev.bi.33.070164.002155. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. MARGRETH A., MUSCATELLO U., ANDERSSON-CEDERGREN E. A MORPHOLOGI- CAL AND BIOCHEMICAL STUDY ON THE REGULATION OF CARBOHYDRATE METABOLISM IN THE MUSCLE CELL. Exp Cell Res. 1963 Dec;32:484–509. doi: 10.1016/0014-4827(63)90189-7. [DOI] [PubMed] [Google Scholar]
  19. MARGRETH A., NOVELLO F. OBSERVATIONS ON THE CHEMICAL DETERMINATIO AND DISTRIBUTION OF RIBONUCLEIC ACID IN SEVERAL STRIATED MUSCLES. Exp Cell Res. 1964 Jun;35:38–51. doi: 10.1016/0014-4827(64)90069-2. [DOI] [PubMed] [Google Scholar]
  20. MARGRETH A. THE SARCOTUBULAR SYSTEM AND ITS RELATION TO THE CONTROL OF GLYCOLYSIS. Biochim Biophys Acta. 1963 Oct 1;77:337–339. doi: 10.1016/0006-3002(63)90506-7. [DOI] [PubMed] [Google Scholar]
  21. MUSCATELLO U., ANDERSSON-CEDERGREN E., AZZONE G. F. The mechanism of muscle-fiber relaxation adenosine triphosphatase and relaxing activity of the sarcotubular system. Biochim Biophys Acta. 1962 Sep 10;63:55–74. doi: 10.1016/0006-3002(62)90338-4. [DOI] [PubMed] [Google Scholar]
  22. MUSCATELLO U., ANDERSSON-CEDERGREN E., AZZONE G. F., von der DECKEN The sarcotubular system of frog skeletal muscle. A morphological and biochemical study. J Biophys Biochem Cytol. 1961 Aug;10(4):201–218. doi: 10.1083/jcb.10.4.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NARAHARA H. T., OZAND P., CORI C. F. Studies of tissue permeability. VII. The effect of insulin on glucose penetration and phosphorylation in frog muscle. J Biol Chem. 1960 Dec;235:3370–3378. [PubMed] [Google Scholar]
  24. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PRICE H., PEASE D. C., PEARSON C. M. Selective actin filament and Z-band degeneration induced by plasmocid. An electron microscopic study. Lab Invest. 1962 Jul;11:549–562. [PubMed] [Google Scholar]
  27. RISEBROUGH R. W., TISSIERES A., WATSON J. D. Messenger-RNA attachment to active ribosomes. Proc Natl Acad Sci U S A. 1962 Mar 15;48:430–436. doi: 10.1073/pnas.48.3.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SCHAPIRA G., DREYFUS J. C. Biochemical changes in muscle consequent upon interruption of the motor nerves. Am J Phys Med. 1959 Oct;38:207–215. [PubMed] [Google Scholar]
  29. STEWART D. M. Protein composition of denervated muscle. Am J Physiol. 1962 Feb;202:281–284. doi: 10.1152/ajplegacy.1962.202.2.281. [DOI] [PubMed] [Google Scholar]
  30. WADDINGTON C. H., PERRY M. M. Helical arrangement of ribosomes in differentiating muscle cells. Exp Cell Res. 1963 May;30:599–600. doi: 10.1016/0014-4827(63)90339-2. [DOI] [PubMed] [Google Scholar]
  31. WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. ZAK R., GUTMANN E. Lack of correlation between synthesis of nucleic acids and proteins in denervated muscle. Nature. 1960 Mar 12;185:766–767. doi: 10.1038/185766a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES