Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1962 May 1;13(2):217–232. doi: 10.1083/jcb.13.2.217

CYTOCHEMICAL STUDY ON THE PANCREAS OF THE GUINEA PIG

VII. Effects of Spermine on Ribosomes

Philip Siekevitz 1, George E Palade 1
PMCID: PMC2106828  PMID: 13912670

Abstract

Pancreatic ribosomes (guinea pig) aggregate and lose upon treatment with polyamines, particularly spermine, their bound secretory enzymes. Spermine, at 0.5 mM, for example, causes the release of about 85 per cent of the chymotrypsinogen and RNase, and from 85 to 100 per cent of the ribosomal amylase. At the same time, the particles lose about 10 per cent of their RNA, 7 to 24 per cent of their total protein, and from 75 to 100 per cent of their Mg++. Observations with the electron microscope confirm the heavy agglutinating of the ribosomes but otherwise show little change in the structure of the particles. Using radioactive spermine it was found that, concomitant with the loss of bound enzymes and Mg++ from the ribosomes, spermine became bound to the particle. The extent of binding ranged from 0.29 to 1.49 µmoles per 10µmoles RNA-P. The bound radioactive spermine can be removed by subsequent treatment of the ribosomes with GTP, ATP, or P-P, which treatment also removes most of the RNA of the particles, leaving behind ribosomes with a much lower RNA/protein ratio. From this evidence it was inferred that spermine, in releasing the Mg++ of the particle, becomes salt-linked to the free phosphate hydroxyl groups of the RNA. Freshly isolated pancreatic and hepatic ribosomes contain very little spermine, about 0.1 to 0.2 µmoles polyamine/10 µmoles RNA-P. The results are discussed in terms of the linkages between the structural protein, the bound secretory enzymes, and the RNA of the ribosomes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. ANDERSON N. G., NORRIS C. B. Cell division. III. The effects of amines on the structures of isolated nuclei. Exp Cell Res. 1960 Apr;19:605–618. doi: 10.1016/0014-4827(60)90067-7. [DOI] [PubMed] [Google Scholar]
  3. BOSCH L., BLOEMENDAL H. The effect of puromycin on nucleotide and amino acid transfer from soluble ribonucleic acid to the microsomes. Biochim Biophys Acta. 1961 Aug 19;51:613–615. doi: 10.1016/0006-3002(61)90629-1. [DOI] [PubMed] [Google Scholar]
  4. CHAO F. C., SCHACHMAN H. K. The isolation and characterization of a macro-molecular ribonucleoprotein from yeast. Arch Biochem Biophys. 1956 Mar;61(1):220–230. doi: 10.1016/0003-9861(56)90334-4. [DOI] [PubMed] [Google Scholar]
  5. CHUNG C. W., MAHLER H. R., ENRIONE M. Incorporation of adenine nucleotide into ribonucleic acid by cytoplasmic enzyme preparations of chick embryos. J Biol Chem. 1960 May;235:1448–1461. [PubMed] [Google Scholar]
  6. COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
  7. COLBOURN J. L., WITHERSPOON B. H., HERBST E. J. Effect of intracellular spermine on ribosomes of Escherichia coli. Biochim Biophys Acta. 1961 May 13;49:422–424. doi: 10.1016/0006-3002(61)90155-x. [DOI] [PubMed] [Google Scholar]
  8. ELSON D. Preparation and properties of a ribonucleoprotein isolated from Escherichia coli. Biochim Biophys Acta. 1959 Dec;36:362–371. doi: 10.1016/0006-3002(59)90178-7. [DOI] [PubMed] [Google Scholar]
  9. FELSENFELD G., HUANG S. L. Some effects of charge and structure upon ionic interactions of nucleic acids. Biochim Biophys Acta. 1961 Jul 22;51:19–32. doi: 10.1016/0006-3002(61)91012-5. [DOI] [PubMed] [Google Scholar]
  10. FELSENFELD G., HUANG S. The interaction of polynucleotides with metal ions, amino acids, and polyamines. Biochim Biophys Acta. 1960 Jan 29;37:425–433. doi: 10.1016/0006-3002(60)90498-4. [DOI] [PubMed] [Google Scholar]
  11. HAMILTON M. G., PETERMANN M. L. Ultracentrifugal studies on ribonucleoprotein from rat liver microsomes. J Biol Chem. 1959 Jun;234(6):1441–1446. [PubMed] [Google Scholar]
  12. HERBST E. J., WEAVER R. H., KEISTER D. L. The gram reaction and cell composition: diamines and polyamines. Arch Biochem Biophys. 1958 May;75(1):171–177. doi: 10.1016/0003-9861(58)90407-7. [DOI] [PubMed] [Google Scholar]
  13. HUANG S. L., FELSENFELD G. Solubility of complexes of polynucleotides with spermine. Nature. 1960 Oct 22;188:301–302. doi: 10.1038/188301a0. [DOI] [PubMed] [Google Scholar]
  14. MORRIS A. J., SCHWEET R. S. Release of soluble protein from reticulocyte ribosomes. Biochim Biophys Acta. 1961 Feb 18;47:415–416. doi: 10.1016/0006-3002(61)90310-9. [DOI] [PubMed] [Google Scholar]
  15. NATHANS D., LIPMANN F. Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1961 Apr 15;47:497–504. doi: 10.1073/pnas.47.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RAZIN S., ROZANSKY R. Mechanism of the antibacterial action of spermine. Arch Biochem Biophys. 1959 Mar;81(1):36–54. doi: 10.1016/0003-9861(59)90173-0. [DOI] [PubMed] [Google Scholar]
  18. ROSENTHAL S. M., TABOR C. W. The pharmacology of spermine and spermidine; distribution and excretion. J Pharmacol Exp Ther. 1956 Feb;116(2):131–138. [PubMed] [Google Scholar]
  19. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J Biophys Biochem Cytol. 1958 Mar 25;4(2):203–218. doi: 10.1083/jcb.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. TS'O P. O., BONNER J., VINOGRAD J. Structure and properties of microsomal nucleoprotein particles from pea seedlings. Biochim Biophys Acta. 1958 Dec;30(3):570–582. doi: 10.1016/0006-3002(58)90104-5. [DOI] [PubMed] [Google Scholar]
  21. YOSHIKAWA H., MARUO B. Stimulation of amylase formation by an amine from Bacillus subtilis. Biochim Biophys Acta. 1960 Dec 4;45:270–278. doi: 10.1016/0006-3002(60)91451-7. [DOI] [PubMed] [Google Scholar]
  22. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ZILLIG W., KRONE W., ALBERS M. [Investigations on the biosynthesis of proteins. III. Contribution to the knowledge of the composition and structure of ribonucleoprotein particles]. Hoppe Seylers Z Physiol Chem. 1959;317:131–143. doi: 10.1515/bchm2.1959.317.1.131. [DOI] [PubMed] [Google Scholar]
  24. ZUBAY G. The interaction of nucleic acid with Mg-ions. Biochim Biophys Acta. 1959 Mar;32(1):233–236. doi: 10.1016/0006-3002(59)90573-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES