Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Jan 1;28(1):73–93. doi: 10.1083/jcb.28.1.73

REDUNDANT MYELIN SHEATHS AND OTHER ULTRASTRUCTURAL FEATURES OF THE TOAD CEREBELLUM

Jack Rosenbluth 1
PMCID: PMC2106890  PMID: 5901501

Abstract

Some of the myelin sheaths in the cerebellum of normal adult toads exhibit extensive evaginations of their full thickness. These redundant flaps of myelin are collapsed; i.e., they contain no axon and have no lumen. They extend away from the parent axonal myelin sheaths and tend to enfold other myelinated fibers or granule cell perikarya, producing bizarre configurations of myelin and what appear to be partially or completely myelinated cell bodies. In some instances, only the redundant flap of myelin appears in the plane of section, and its attachment to an axonal myelin sheath in another plane is only inferred. Single lamellae of myelin also tend to invest cerebellar granule cells and other processes, and these too appear to fold on themselves producing two- or four-layered segments. It is suggested that there are two phases of myelinogenesis: an initial "wrapping" phase, followed by a prolonged second phase during which internodes of myelin increase in both length and girth by a process other than wrapping, and that the occurrence of redundant myelin sheaths may reflect overgrowth of myelin during the second phase. Observations on the general organization of the toad cerebellum and on the ultrastructural cytology of its layers are also presented.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  2. BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
  3. BUNGE M. B., BUNGE R. P., PAPPAS G. D. Electron microscopic demonstration of connections between glia and myelin sheaths in the developing mammalian central nervous system. J Cell Biol. 1962 Feb;12:448–453. doi: 10.1083/jcb.12.2.448. [DOI] [PubMed] [Google Scholar]
  4. BUNGE M. B., BUNGE R. P., RIS H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol. 1961 May;10:67–94. doi: 10.1083/jcb.10.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boycott A. E. On the number of nodes of Ranvier in different stages of the growth of nerve fibres in the frog. J Physiol. 1903 Dec 14;30(3-4):370–380. doi: 10.1113/jphysiol.1903.sp001001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ENGSTROM H., WERSALL J. Myelin sheath structure in nerve fibre demyelinization and branching regions. Exp Cell Res. 1958 Apr;14(2):414–425. doi: 10.1016/0014-4827(58)90200-3. [DOI] [PubMed] [Google Scholar]
  7. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRIEDE R. Der quantitative Anteil der Glia an der Cortexentwicklung. Acta Anat (Basel) 1954;20(3):290–296. [PubMed] [Google Scholar]
  9. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  10. GRAY E. G. The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat. 1961 Jul;95:345–356. [PMC free article] [PubMed] [Google Scholar]
  11. HERNDON R. M. THE FINE STRUCTURE OF THE RAT CEREBELLUM. II. THE STELLATE NEURONS, GRANULE CELLS, AND GLIA. J Cell Biol. 1964 Nov;23:277–293. doi: 10.1083/jcb.23.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HERNDON R. M. The fine structure of the Purkinje cell. J Cell Biol. 1963 Jul;18:167–180. doi: 10.1083/jcb.18.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HESS A., YOUNG J. Z. The nodes of Ranvier. Proc R Soc Lond B Biol Sci. 1952 Nov 20;140(900):301–320. doi: 10.1098/rspb.1952.0063. [DOI] [PubMed] [Google Scholar]
  14. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LUSE S. A. Formation of myelin in the central nervous system of mice and rats, as studied with the electron microscope. J Biophys Biochem Cytol. 1956 Nov 25;2(6):777–784. doi: 10.1083/jcb.2.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MATURANA H. R. The fine anatomy of the optic nerve of anurans--an electron microscope study. J Biophys Biochem Cytol. 1960 Feb;7:107–120. doi: 10.1083/jcb.7.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PALAY S. L., McGEE-RUSSELL S. M., GORDON S., Jr, GRILLO M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol. 1962 Feb;12:385–410. doi: 10.1083/jcb.12.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PETERS A. The structure of myelin sheaths in the central nervous system of Xenopus laevis (Daudin). J Biophys Biochem Cytol. 1960 Feb;7:121–126. doi: 10.1083/jcb.7.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  21. ROBERTSON J. D., BODENHEIMER T. S., STAGE D. E. THE ULTRASTRUCTURE OF MAUTHNER CELL SYNAPSES AND NODES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:159–199. doi: 10.1083/jcb.19.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROBERTSON J. D. The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath. J Biophys Biochem Cytol. 1958 Jan 25;4(1):39–46. doi: 10.1083/jcb.4.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ROSENBLUTH J. The fine structure of acoustic ganglia in the rat. J Cell Biol. 1962 Feb;12:329–359. doi: 10.1083/jcb.12.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROSS L. L., BORNSTEIN M. B., LEHRER G. M. Electron microscopic observations of rat and mouse cerebellum in tissue culture. J Cell Biol. 1962 Jul;14:19–30. doi: 10.1083/jcb.14.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. THOMAS P. K., YOUNG J. Z. Internode lengths in the nerves of fishes. J Anat. 1949 Oct;83(4):336-50, pl. [PMC free article] [PubMed] [Google Scholar]
  27. UZMAN B. G. THE SPIRAL CONFIGURATION OF MYELIN LAMELLAE. J Ultrastruct Res. 1964 Aug;11:208–212. doi: 10.1016/s0022-5320(64)80104-0. [DOI] [PubMed] [Google Scholar]
  28. Vizoso A. D., Young J. Z. Internode length and fibre diameter in developing and regenerating nerves. J Anat. 1948 Apr;82(Pt 1-2):110–134.1. [PMC free article] [PubMed] [Google Scholar]
  29. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES