Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Jan 1;28(1):51–72. doi: 10.1083/jcb.28.1.51

FINE STRUCTURE OF DESMOSOMES, HEMIDESMOSOMES, AND AN ADEPIDERMAL GLOBULAR LAYER IN DEVELOPING NEWT EPIDERMIS

Douglas E Kelly 1
PMCID: PMC2106892  PMID: 5901500

Abstract

The skin of late embryonic, larval, and young postmetamorphic newts, Taricha torosa, has been examined with particular reference to areas of cellular attachment. Stereo electron microscopic techniques and special staining methods for extracellular materials were utilized in addition to conventional avenues of ultrastructural study to investigate the fine architecture of desmosomes, hemidesmosomes, their associated filament systems, and extracellular materials. No evidence has been found that continuity of tonofilaments between adjacent cells exists at desmosomes. Rather, most of the tonofilaments which approach desmosomes (and perhaps also hemidesmosomes) course toward the "attachment plaque" and then loop, either outside the plaque or within it, and return into the main filament tracts of the cell. These facts suggest that the filamentous framework provides intracellular tensile support while adhesion is a product of extracellular materials which accumulate at attachment sites. Evidence is presented that the extracellular material is arranged as pillars or partitions which are continuous with or layered upon the outer unit cell membrane leaflets and adjoined in a discontinuous dense midline of the desmosome. A similar analysis has been made of extracellular materials associated with hemidesmosomes along the basal surface of epidermal cells. An adepidermal globular zone, separating the basal cell boundary from the underlying basal lamina and collagenous lamellae during larval stages, has been interpreted from enzyme and solvent extraction study as a lipid-mucopolysaccharide complex, the function of which remains obscure. These observations are discussed in relation to prevailing theories of cellular adhesion and epidermal differentiation. They appear consistent with the concept that a wide range of adhesive specializations exists in nature, and that the more highly organized of these, such as large desmosomes and hemidesmosomes, serve as strong, highly supported attachment sites, supplemental in function to a more generalized aggregating mechanism.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M. The bases of the locomotory behaviour of fibroblasts. Exp Cell Res. 1961;Suppl 8:188–198. doi: 10.1016/0014-4827(61)90348-2. [DOI] [PubMed] [Google Scholar]
  2. BENNETT H. S., LUFT J. H. zeta-Collidine as a basis for buffering fixatives. J Biophys Biochem Cytol. 1959 Aug;6(1):113–114. doi: 10.1083/jcb.6.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAPMAN G. B., DAWSON A. B. Fine structure of the larval anuran epidermis, with special reference to the figures of Eberth. J Biophys Biochem Cytol. 1961 Jul;10:425–435. doi: 10.1083/jcb.10.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHARLES A., SMIDDY F. G. The tonofibrils of the human epidermis. J Invest Dermatol. 1957 Nov;29(5):327–338. doi: 10.1038/jid.1957.108. [DOI] [PubMed] [Google Scholar]
  5. DE ROBERTIS E., RODRIGUEZ DE LORES ARNAIZ G., SALGANICOFF L., PELLEGRINO DE IRALDI A., ZIEHER L. M. Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J Neurochem. 1963 Apr;10:225–235. doi: 10.1111/j.1471-4159.1963.tb05038.x. [DOI] [PubMed] [Google Scholar]
  6. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FAWCETT D. W. Intercellular bridges. Exp Cell Res. 1961;Suppl 8:174–187. doi: 10.1016/0014-4827(61)90347-0. [DOI] [PubMed] [Google Scholar]
  9. FERRIS W., WEISS P. The basement lamelia of amphibian skin; its reconstruction after wounding. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):275–282. doi: 10.1083/jcb.2.4.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HAY E. D. Fine structure of an unusual intracellular supporting network in the Leydig cells of Amblystoma epidermis. J Biophys Biochem Cytol. 1961 Jul;10:457–463. doi: 10.1083/jcb.10.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAY E. D., REVEL J. P. Autoradiographic studies of the origin of the basement lamella in Ambystoma. Dev Biol. 1963 Mar;6:152–168. doi: 10.1016/0012-1606(63)90114-3. [DOI] [PubMed] [Google Scholar]
  13. KALLMAN F., GROBSTEIN C. SOURCE OF COLLAGEN AT EPITHELIOMESENCHYMAL INTERFACES DURING INDUCTIVE INTERACTION. Dev Biol. 1965 Apr;11:169–183. doi: 10.1016/0012-1606(65)90055-2. [DOI] [PubMed] [Google Scholar]
  14. KEMP N. E. Metamorphic changes of dermis in skin of frog larvae exposed to thyroxine. Dev Biol. 1963 Mar;6:244–254. doi: 10.1016/0012-1606(63)90121-0. [DOI] [PubMed] [Google Scholar]
  15. KEMP N. E. Replacement of the larval basement lamella by adult-type basement membrane in anuran skin during metamorphosis. Dev Biol. 1961 Aug;3:391–410. doi: 10.1016/0012-1606(61)90025-2. [DOI] [PubMed] [Google Scholar]
  16. LOEWENSTEIN W. R., KANNO Y. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. I. MODIFICATIONS OF SURFACE MEMBRANE PERMEABILITY. J Cell Biol. 1964 Sep;22:565–586. doi: 10.1083/jcb.22.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loewenstein W. R., Socolar S. J., Higashino S., Kanno Y., Davidson N. Intercellular Communication: Renal, Urinary Bladder, Sensory, and Salivary Gland Cells. Science. 1965 Jul 16;149(3681):295–298. doi: 10.1126/science.149.3681.295. [DOI] [PubMed] [Google Scholar]
  19. MATOLTSY A. G., PARAKKAL P. F. MEMBRANE-COATING GRANULES OF KERATINIZING EPITHELIA. J Cell Biol. 1965 Feb;24:297–307. doi: 10.1083/jcb.24.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Niu M. C., Twitty V. C. The Differentiation of Gastrula Ectoderm in Medium Conditioned by Axial Mesoderm. Proc Natl Acad Sci U S A. 1953 Sep;39(9):985–989. doi: 10.1073/pnas.39.9.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ODLAND G. F. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958 Sep 25;4(5):529–538. [PMC free article] [PubMed] [Google Scholar]
  22. OVERTON J. Desmosome development in normal and reassociating cells in the early chick blastoderm. Dev Biol. 1962 Jun;4:532–548. doi: 10.1016/0012-1606(62)90056-8. [DOI] [PubMed] [Google Scholar]
  23. PHELPS P. C., RUBIN C. E., LUFT J. H. ELECTRON MICROSCOPE TECHNIQUES FOR STUDYING ABSORPTION OF FAT IN MAN WITH SOME OBSERVATIONS ON PINOCYTOSIS. Gastroenterology. 1964 Feb;46:134–156. [PubMed] [Google Scholar]
  24. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  26. SALPETER M. M., SINGER M. Differentiation of the submicroscopic adepidermal membrane during limb regeneration in adult Triturus, including a note on the use of the term basement membrane. Anat Rec. 1960 Jan;136:27–39. doi: 10.1002/ar.1091360104. [DOI] [PubMed] [Google Scholar]
  27. SINGER M., SALPETER M. M. The bodies of Eberth and associated structures in the skin of the frog tadpole. J Exp Zool. 1961 Jun;147:1–19. doi: 10.1002/jez.1401470102. [DOI] [PubMed] [Google Scholar]
  28. SNELL R. S. THE FATE OF EPIDERMAL DESMOSOMES IN MAMMALIAN SKIN. Z Zellforsch Mikrosk Anat. 1965 May 26;66(4):471–477. doi: 10.1007/BF00368240. [DOI] [PubMed] [Google Scholar]
  29. TAYLOR R. E., Jr, BARKER S. B. TRANSEPIDERMAL POTENTIAL DIFFERENCE: DEVELOPMENT IN ANURAN LARVAE. Science. 1965 Jun 18;148(3677):1612–1613. doi: 10.1126/science.148.3677.1612. [DOI] [PubMed] [Google Scholar]
  30. Usuku G., Gross J. Morphologic studies of connective tissue resorption in the tail fin of metamorphosing bullfrog tadpole. Dev Biol. 1965 Jun;11(3):352–370. doi: 10.1016/0012-1606(65)90044-8. [DOI] [PubMed] [Google Scholar]
  31. VANABLE J. W., Jr GRANULAR GLAND DEVELOPMENT DURING XENOPUS LAEVIS METAMORPHOSIS. Dev Biol. 1964 Dec;10:331–357. doi: 10.1016/0012-1606(64)90049-1. [DOI] [PubMed] [Google Scholar]
  32. VOUTE C. L. AN ELECTRON MICROSCOPIC STUDY OF THE SKIN OF THE FROG (RANA PIPIENS). J Ultrastruct Res. 1963 Dec;52:497–510. doi: 10.1016/s0022-5320(63)80081-7. [DOI] [PubMed] [Google Scholar]
  33. WIENER J., SPIRO D., LOEWENSTEIN W. R. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. J Cell Biol. 1964 Sep;22:587–598. doi: 10.1083/jcb.22.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WOOD R. L. Intercellular attachment in the epithelium of Hydra as revealed by electron microscopy. J Biophys Biochem Cytol. 1959 Dec;6:343–352. doi: 10.1083/jcb.6.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weiss P., Ferris W. ELECTRON-MICROSCOPIC STUDY OF THE TEXTURE OF THE BASEMENT MEMBRANE OF LARVAL AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1954 Jun;40(6):528–540. doi: 10.1073/pnas.40.6.528. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES