Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 May 1;29(2):251–265. doi: 10.1083/jcb.29.2.251

MICROTUBULES IN RELATION TO THE MOTILITY OF A SPERM SYNCYTIUM IN AN ARMORED SCALE INSECT

W Gerald Robison Jr 1
PMCID: PMC2106900  PMID: 5961339

Abstract

Male scale insects of the species Parlatoria oleae Colvée (Homoptera: Coccoidea) produce motile sperm bundles. The bundle is a syncytium consisting of 10 to 20 closely packed, filamentous spermatozoa, which share a common cytoplasm and are enclosed in a common membrane. The individual spermatozoon is not surrounded by a plasma membrane, but is delimited by a scroll-like sheath composed of 45 to 50 microtubules. The microtubules run parallel to the long axis of the spermatozoon and are arranged in a spiral pattern as seen in transection. The outside diameter measures approximately 140 to 220 A and the inside diameter, 70 to 100 A. The spermatozoon is about 300 µ long and tapers gradually from a diameter of approximately 0.3 µ anteriorly to 0.1 µ posteriorly. The anterior half (150 µ) has a threadlike core of chromatin about 0.07 µ in diameter. A homogeneous cytoplasm surrounds the nuclear core and fills the posterior half of the spermatozoon. Neither osmium tetroxide nor glutaraldehyde fixation revealed the presence of a nuclear envelope, acrosomal membranes, mitochondria, flagellum, or centrioles. In spite of the apparent lack of orthodox cell organelles, the spermatozoon is actively motile upon release from the bundle. It exhibits capactiy for motility throughout its entire length. Since the sheath of microtubules is the only structure which extends the full length of the spermatozoon, it probably plays a significant role in spermatozoan motility.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. doi: 10.1083/jcb.5.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDERSON J. M. A cytological and cytochemical study of the testicular cyst-cells in the Japanese beetle. Physiol Zool. 1950 Oct;23(4):308–316. doi: 10.1086/physzool.23.4.30152090. [DOI] [PubMed] [Google Scholar]
  3. BAWA S. R. ELECTRON MICROSCOPE STUDY OF SPERMIOGENESIS IN A FIRE-BRAT INSECT, THRMOBIA DOMESTICA PACK. I. MATURE SPERMATOZOON. J Cell Biol. 1964 Dec;23:431–446. doi: 10.1083/jcb.23.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
  5. BURGOS M. H., FAWCETT D. W. Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol. 1955 Jul 25;1(4):287–300. doi: 10.1083/jcb.1.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FAWCETT D. W., ITO S., SLAUTTERBACK D. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol. 1959 May 25;5(3):453–460. doi: 10.1083/jcb.5.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FAWCETT D. W. Intercellular bridges. Exp Cell Res. 1961;Suppl 8:174–187. doi: 10.1016/0014-4827(61)90347-0. [DOI] [PubMed] [Google Scholar]
  9. GIBBONS I. R. STUDIES ON THE PROTEIN COMPONENTS OF CILIA FROM TETRAHYMENA PYRIFORMIS. Proc Natl Acad Sci U S A. 1963 Nov;50:1002–1010. doi: 10.1073/pnas.50.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUGHES-SCHRADER S. Cytology of coccids (Coccoïdea-Homoptera). Adv Genet. 1948;35(2):127–203. doi: 10.1016/s0065-2660(08)60468-x. [DOI] [PubMed] [Google Scholar]
  12. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LINDAHL P. E., DREVIUS L. O. OBSERVATIONS ON BULL SPERMATOZOA IN A HYPOTONIC MEDIUM RELATED TO SPERM MOBILITY MECHANISMS. Exp Cell Res. 1964 Dec;36:632–646. doi: 10.1016/0014-4827(64)90319-2. [DOI] [PubMed] [Google Scholar]
  14. Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
  15. MEYER G. F. DIE PARAKRISTALLINEN KOERPER IN DEN SPERMIENSCHWAENZEN VON DROSOPHILA. Z Zellforsch Mikrosk Anat. 1964 May 29;62:762–784. [PubMed] [Google Scholar]
  16. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PORTER K. R. The submicroscopic morphology of protoplasm. Harvey Lect. 1955;51:175–228. [PubMed] [Google Scholar]
  19. ROTH L. E. A filamentous component of protozoan fibrillar systems. J Ultrastruct Res. 1958 Apr;1(3):223–234. doi: 10.1016/s0022-5320(58)80002-7. [DOI] [PubMed] [Google Scholar]
  20. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. YASUZUMI G., FUJIMURA W., ISHIDA H. Spermatogenesis in animal as revealed by electron microscopy. V. Spermatid differentiation of Drosophila and grasshopper. Exp Cell Res. 1958 Apr;14(2):268–285. doi: 10.1016/0014-4827(58)90185-x. [DOI] [PubMed] [Google Scholar]
  23. von Bonsdorff C. H., Telkkä A. The spermatozoon flagella in Diphyllobothrium latum (fish tapeworm). Z Zellforsch Mikrosk Anat. 1965 Jun 9;66(5):643–648. doi: 10.1007/BF00339248. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES