Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Mar 1;28(3):423–436. doi: 10.1083/jcb.28.3.423

THE DEVELOPMENT OF CELLULAR STALKS IN BACTERIA

Jean M Schmidt 1, R Y Stanier 1
PMCID: PMC2106941  PMID: 5960805

Abstract

Extensive stalk elongation in Caulobacter and Asticcacaulis can be obtained in a defined medium by limiting the concentration of phosphate. Caulobacter cells which were initiating stalk formation were labeled with tritiated glucose. After removal of exogenous tritiated material, the cells were subjected to phosphate limitation while stalk elongation occurred. The location of tritiated material in the elongated stalks as detected by radioautographic techniques allowed identification of the site of stalk development. The labeling pattern obtained was consistent with the hypothesis that the materials of the stalk are synthesized at the juncture of the stalk with the cell. Complementary labeling experiments with Caulobacter and Asticcacaulis confirmed this result. In spheroplasts of C. crescentus prepared by treatment with lysozyme, the stalks lost their normal rigid outline after several minutes of exposure to the enzyme, indicating that the rigid layer of the cell wall attacked by lysozyme is present in the stalk. In spheroplasts of growing cells induced with penicillin, the stalks did not appear to be affected, indicating that the stalk wall is a relatively inert, nongrowing structure. The morphogenetic implications of these findings are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOWERS L. E., WEAVER R. H., GRULA E. A., EDWARDS O. F. Studies on a strain of Caulobacter from water. I. Isolation and identification as Caulobacter vibrioides Henrici and Johnson with emended description. J Bacteriol. 1954 Aug;68(2):194–200. doi: 10.1128/jb.68.2.194-200.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHUNG K. L., HAWIRKO R. Z., ISAAC P. K. CELL WALL REPLICATION. II. CELL WALL GROWTH AND CROSS WALL FORMATION OF ESCHERICHIA COLI AND STREPTOCOCCUS FAECALIS. Can J Microbiol. 1964 Jun;10:473–482. doi: 10.1139/m64-057. [DOI] [PubMed] [Google Scholar]
  5. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  6. COLE R. M. CELL WALL REPLICATION IN SALMONELLA TYPHOSA. Science. 1964 Feb 21;143(3608):820–822. doi: 10.1126/science.143.3608.820. [DOI] [PubMed] [Google Scholar]
  7. COLE R. M., HAHN J. J. Cell wall replication in Streptococcus pyogenes. Science. 1962 Mar 2;135(3505):722–724. doi: 10.1126/science.135.3505.722. [DOI] [PubMed] [Google Scholar]
  8. FITZ-JAMES P. C. Participation of the cytoplasmic membrane in the growth and spore fromation of bacilli. J Biophys Biochem Cytol. 1960 Oct;8:507–528. doi: 10.1083/jcb.8.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRASER D., MAHLER H. R. The effects of nucleases on the reproduction of T3 bacteriophage in protoplasts of Escherichia coli. Arch Biochem Biophys. 1957 Jul;69:166–177. doi: 10.1016/0003-9861(57)90483-6. [DOI] [PubMed] [Google Scholar]
  10. HOUWINK A. L. Caulobacter; its morphogenesis, taxonomy and parasitism. Antonie Van Leeuwenhoek. 1955;21(1):49–64. doi: 10.1007/BF02543799. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MURRAY R. G., STEED P., ELSON H. E. THE LOCATION OF THE MUCOPEPTIDE IN SECTIONS OF THE CELL WALL OF ESCHERICHIA COLI AND OTHER GRAM-NEGATIVE BACTERIA. Can J Microbiol. 1965 Jun;11:547–560. doi: 10.1139/m65-072. [DOI] [PubMed] [Google Scholar]
  13. PERKINS H. R. Chemical structure and biosynthesis of bacterial cell walls. Bacteriol Rev. 1963 Mar;27:18–55. doi: 10.1128/br.27.1.18-55.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  15. WEIDEL W., FRANK H., MARTIN H. H. The rigid layer of the cell wall of Escherichia coli strain B. J Gen Microbiol. 1960 Feb;22:158–166. doi: 10.1099/00221287-22-1-158. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES