Abstract
Cytoplasmic extracts of the transplantable RPC-20 plasma-cell tumor were fractionated by sucrose density gradient centrifugation. Four major fractions were distinguished: (a) microsomes and mitochondria; (b) membrane-free polyribosomes; (c) free monomeric ribosomes; and (d) soluble fraction. The fractions were analyzed for RNA and lipid phosphorus, and their particulate components were characterized by electron microscopy. Particular attention was paid to the problem of membrane contamination of the free polyribosome fraction. It was shown that this contamination was small in relation with the total content of ribosomes in the fraction, and that it consisted primarily of smooth-surfaced membranes which were not physically associated with the polyribosomes themselves. In vivo incorporation studies were carried out by injecting tumor-bearing animals intravenously with leucine-C14, removing the tumors at various times thereafter, and determining the distribution of protein radioactivity among the gradient-separated cytoplasmic fractions. The free polyribosome and the microsome-mitochondria fractions constituted active centers for protein synthesis. It was shown that nascent protein of the free polyribosome fractions was not associated significantly with the contaminating membranes. The kinetics of labeling during incorporation times up to 11 min suggested that protein synthesized on the free polyribosomes was rapidly transferred in vivo to the soluble fraction of the cell, while protein synthesized by the microsomes and mitochondria remained localized within these elements. It was estimated that the free polyribosome fraction and the microsome-mitochondria fraction accounted for approximately equal proportions of the total cytoplasmic protein synthesis in vivo.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENEDETTI E. L., BLOEMENDAL H., BONT W. S. POLYRIBOSOMES ISOL'ES 'A PARTIR DU FOIE DE RAT. C R Hebd Seances Acad Sci. 1964 Aug 10;259:1353–1356. [PubMed] [Google Scholar]
- BUTLER J. A., CRATHORN A. R., HUNTER G. D. The site of protein synthesis in Bacillus megaterium. Biochem J. 1958 Aug;69(4):544–553. doi: 10.1042/bj0690544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALTON A. J., POTTER M., MERWIN R. M. Some ultrastructural characteristics of a series of primary and transplanted plasma-cell tumors of the mouse. J Natl Cancer Inst. 1961 May;26:1221–1267. [PubMed] [Google Scholar]
- HENDLER R. W., TANI J. ON THE CYTOLOGICAL UNIT FOR PROTEIN SYNTHESIS IN VIVO IN E. COLI. II. STUDIES WITH INTACT CELLS OF TYPE B. Biochim Biophys Acta. 1964 Feb 17;80:294–306. doi: 10.1016/0926-6550(64)90101-x. [DOI] [PubMed] [Google Scholar]
- HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
- KUFF E. L., POTTER M., MCINTIRE K. R., ROBERTS N. E. THE IN VITRO SYNTHESIS OF SPECIFIC SECRETORY PROTEIN BY AN ASCITES PLASMA-CELL TUMOR. Biochemistry. 1964 Nov;3:1707–1712. doi: 10.1021/bi00899a019. [DOI] [PubMed] [Google Scholar]
- KUFF E. L., ZEIGEL R. F. Cytoplasmic ribonucleoprotein components of the Novikoff hepatoma. J Biophys Biochem Cytol. 1960 Jun;7:465–478. doi: 10.1083/jcb.7.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANS R. J., NOVELLI G. D. A convenient, rapid and sensitive method for measuring the incorporation of radioactive amino acids into protein. Biochem Biophys Res Commun. 1960 Nov;3:540–543. doi: 10.1016/0006-291x(60)90171-6. [DOI] [PubMed] [Google Scholar]
- Manganiello V. C., Phillips A. H. The relationship between ribosomes and the endoplasmic reticulum during protein synthesis. J Biol Chem. 1965 Oct;240(10):3951–3959. [PubMed] [Google Scholar]
- Moore L. D., Umbreit W. W. Membrane-associated protein synthesis in Streptococcus faecalis. Biochim Biophys Acta. 1965 Jul 15;103(3):466–477. doi: 10.1016/0005-2787(65)90139-5. [DOI] [PubMed] [Google Scholar]
- PARSONS D. F., DARDEN E. B., Jr, LINDSLEY D. L., PRATT G. T. Electron microscopy of plasma-cell tumors of the mouse. I. MPC-1 and X5563 tumors. J Biophys Biochem Cytol. 1961 Feb;9:353–368. doi: 10.1083/jcb.9.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POTTER M., BOYCE C. R. Induction of plasma-cell neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants. Nature. 1962 Mar 17;193:1086–1087. doi: 10.1038/1931086a0. [DOI] [PubMed] [Google Scholar]
- RIFKIND R. A., DANON D., MARKS P. A. ALTERATIONS IN POLYRIBOSOMES DURING ERYTHROID CELL MATURATION. J Cell Biol. 1964 Sep;22:599–611. doi: 10.1083/jcb.22.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHLESSINGER D. PROTEIN SYNTHESIS BY POLYRIBOSOMES ON PROTOPLAST MEMBRANES OF B. MEGATERIUM. J Mol Biol. 1963 Nov;7:569–582. doi: 10.1016/s0022-2836(63)80103-5. [DOI] [PubMed] [Google Scholar]
- Tsukada K., Lieberman I. Protein synthesis by liver polyribosomes after partial hepatectomy. Biochem Biophys Res Commun. 1965 Jun 9;19(6):702–707. doi: 10.1016/0006-291x(65)90314-1. [DOI] [PubMed] [Google Scholar]
- WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
