Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Jul 1;30(1):59–71. doi: 10.1083/jcb.30.1.59

THE FINE STRUCTURE OF ELASTIC FIBERS

Theodore K Greenlee Jr 1, Russell Ross 1, Jerry L Hartman 1
PMCID: PMC2106991  PMID: 4165078

Abstract

The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANFIELD W. G., BRINDLEY D. C. PRELIMINARY OBSERVATIONS ON SENILE ELASTOSIS USING THE ELECTRON MICROSCOPE. J Invest Dermatol. 1963 Jul;41:9–17. [PubMed] [Google Scholar]
  2. GOMORI G. Aldehyde-fuchsin: a new stain for elastic tissue. Am J Clin Pathol. 1950 Jul;20(7):665–666. [PubMed] [Google Scholar]
  3. GOTTE L., SERAFINI-FRACASSINI A. Electron microscope observations on the structure of elastin. J Atheroscler Res. 1963 May-Jun;3:247–251. doi: 10.1016/s0368-1319(63)80078-2. [DOI] [PubMed] [Google Scholar]
  4. HALL D. A., KEECH M. K., REED R., SAXL H., TUNBRIDGE R. E., WOOD M. J. Collagen and elastin in connective tissue. J Gerontol. 1955 Oct;10(4):388–400. doi: 10.1093/geronj/10.4.388. [DOI] [PubMed] [Google Scholar]
  5. HALL D. A., REED R., TUNBRIDGE R. E. Electron miscroscope studies of elastic tissue. Exp Cell Res. 1955 Feb;8(1):35–48. doi: 10.1016/0014-4827(55)90041-0. [DOI] [PubMed] [Google Scholar]
  6. Haust M. D., More R. H., Bencosme S. A., Balis J. U. Elastogenesis in human aorta: an electron microscopic study. Exp Mol Pathol. 1965 Oct;4(5):508–524. doi: 10.1016/0014-4800(65)90015-8. [DOI] [PubMed] [Google Scholar]
  7. JENSEN J. G. An electron microscopic study on the morphology of the elastin in foetal, human aortas. Acta Pathol Microbiol Scand. 1962;56:388–398. doi: 10.1111/j.1699-0463.1962.tb04190.x. [DOI] [PubMed] [Google Scholar]
  8. KARRER H. E. An electron microscope study of the aorta in young and in aging mice. J Ultrastruct Res. 1961 Mar;5:1–27. doi: 10.1016/s0022-5320(61)80002-6. [DOI] [PubMed] [Google Scholar]
  9. KARRER H. E. Electron microscope study of developing chick embryo aorta. J Ultrastruct Res. 1960 Dec;4:420–454. doi: 10.1016/s0022-5320(60)80032-9. [DOI] [PubMed] [Google Scholar]
  10. KARRER H. E. The fine structure of connective tissue in the tunica propria of bronchioles. J Ultrastruct Res. 1958 Nov;2(1):96–121. doi: 10.1016/s0022-5320(58)90049-2. [DOI] [PubMed] [Google Scholar]
  11. LANSING A. I., ROSENTHAL T. B., ALEX M., DEMPSEY E. W. The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat Rec. 1952 Dec;114(4):555–575. doi: 10.1002/ar.1091140404. [DOI] [PubMed] [Google Scholar]
  12. LOW F. N. Microfibrils: fine filamentous components of the tissue space. Anat Rec. 1962 Feb;142:131–137. doi: 10.1002/ar.1091420205. [DOI] [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PARKER F. An electron microscope study of coronary arteries. Am J Anat. 1958 Sep;103(2):247–273. doi: 10.1002/aja.1001030206. [DOI] [PubMed] [Google Scholar]
  16. RHODIN J., DALHAMN T. Electron microscopy of collagen and elastin in lamina propria of the tracheal muscosa of rat. Exp Cell Res. 1955 Oct;9(2):371–375. doi: 10.1016/0014-4827(55)90116-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES