Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Jul 1;30(1):97–117. doi: 10.1083/jcb.30.1.97

BIOGENESIS OF ENDOPLASMIC RETICULUM MEMBRANES

II. Synthesis of Constitutive Microsomal Enzymes in Developing Rat Hepatocyte

Gustav Dallner 1, Philip Siekevitz 1, George E Palade 1
PMCID: PMC2106995  PMID: 4381698

Abstract

The constitutive enzymes of microsomal membranes were investigated during a period of rapid ER development (from 3 days before to 8 days after birth) in rat hepatocytes. The activities studied (electron transport enzymes and phosphatases) appear at different times and increase at different rates. The increase in the enzyme activities tested was inhibited by Actinomycin D and puromycin. G-6-Pase and NADPH-cytochrome c reductase activities appeared first in the rough microsomes, and subsequently in smooth microsomes, eventually reaching a uniform concentration as in adult liver. The evidence suggests that the enzymes are synthesized in the rough part, then transferred to the smooth part, of the ER. Changes in the fat supplement of the maternal diet brought about changes in the fatty acid composition of microsomal phospholipids but did not influence the enzymic pattern of the suckling. Microsomes from 8-day-old and adult rats lose 95% of PLP and 80% of NADH-cytochrome c reductase activity after acetone-H2O (10:1) extraction. However, one-half the original activity could be regained by adding back phospholipid micelles prepared from purified phospholipid, or from lipid extracts of heart mitochondria, or of liver microsomes of 8-day or adult rats, thus demonstrating an activation of the enzyme by nonspecific phospholipid. The results suggest that during development the enzymic pattern is not influenced by the fatty acid or phospholipid composition of ER membranes.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHMORE J., NESBETT F. B. Effect of bile acids on activity of glucose-6-phosphatase. Proc Soc Exp Biol Med. 1955 May;89(1):78–81. doi: 10.3181/00379727-89-21720. [DOI] [PubMed] [Google Scholar]
  2. BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. VI. Essais de démembrement des microsomes porteurs de glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1551–1568. [PubMed] [Google Scholar]
  3. BRAND L., DAHL C., MAHLER H. R. Biochemical studies of the developing avian embryo. 4. Some respiratory pigments. J Biol Chem. 1960 Aug;235:2456–2467. [PubMed] [Google Scholar]
  4. BRAND L., MAHLER H. R. Biochemical studies of the developing avian embryo. III. The oxidation of reduced pyridine nucleotide. J Biol Chem. 1959 Jun;234(6):1615–1624. [PubMed] [Google Scholar]
  5. BRODIE B. B., GILLETTE J. R., LA DU B. N. Enzymatic metabolism of drugs and other foreign compounds. Annu Rev Biochem. 1958;27(3):427–454. doi: 10.1146/annurev.bi.27.070158.002235. [DOI] [PubMed] [Google Scholar]
  6. BURCH H. B., LOWRY O. H., KUHLMAN A. M., SKERJANCE J., DIAMANT E. J., LOWRY S. R., VON DIPPE P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J Biol Chem. 1963 Jul;238:2267–2273. [PubMed] [Google Scholar]
  7. BURRASTON J., POLLAK J. K. Amino acid incorporation into embryonic rat liver. Exp Cell Res. 1961 Dec;25:687–690. doi: 10.1016/0014-4827(61)90199-9. [DOI] [PubMed] [Google Scholar]
  8. Bernheim F., Felsovanyi A. V. COENZYME CONCENTRATION OF TISSUES. Science. 1940 Jan 19;91(2351):76–76. doi: 10.1126/science.91.2351.76-a. [DOI] [PubMed] [Google Scholar]
  9. Biran L. A., Bartley W., Carter C. W., Renshaw A. Studies on essential fatty acid deficiency. Effect of the deficiency on the lipids in various rat tissues and the influence of dietary supplementation with essential fatty acids on deficient rats. Biochem J. 1964 Dec;93(3):492–498. doi: 10.1042/bj0930492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CHATTERJEE I. B., MCKEE R. W. BIOSYNTHESIS OF L-ASCORBIC ACID IN RAT LIVER MICROSOMES: INFLUENCES OF AGE, SEX, DIETARY CHANGES, AND WHOLE-BODY X-IRRADIATION. Arch Biochem Biophys. 1965 Jan;109:62–67. doi: 10.1016/0003-9861(65)90287-0. [DOI] [PubMed] [Google Scholar]
  11. COQUOIN-CARNOT M., ROUX J. M. [Activity of glucose-6-phosphatase and level of glycogen in the rat kidney during fetal and postnatal life]. Bull Soc Chim Biol (Paris) 1960;42:237–242. [PubMed] [Google Scholar]
  12. D'AMELIO V., MUTOLO V., PIAZZA E. A SEROLOGICAL STUDY OF THE CELL FRACTIONS DURING THE EMBRYONIC DEVELOPMENT OF LIVER IN CHICK. Exp Cell Res. 1963 Sep;31:499–507. doi: 10.1016/0014-4827(63)90397-5. [DOI] [PubMed] [Google Scholar]
  13. DAS M. L., CRANE F. L. PROTEOLIPIDS. I. FORMATION OF PHOSPHOLIPID-CYTOCHROME C COMPLEXES. Biochemistry. 1964 May;3:696–700. doi: 10.1021/bi00893a017. [DOI] [PubMed] [Google Scholar]
  14. DAWKINS M. J. Changes in glucose-6-phosphatase activity in liver and kidney at birth. Nature. 1961 Jul 1;191:72–73. doi: 10.1038/191072b0. [DOI] [PubMed] [Google Scholar]
  15. DAWKINS M. J. Respiratory enzymes in the liver of the newborn rat. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):284–298. doi: 10.1098/rspb.1959.0022. [DOI] [PubMed] [Google Scholar]
  16. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dallner G., Siekevitz P., Palade G. E. Synthesis of microsomal membranes and their enzymic constituents in developing rat liver. Biochem Biophys Res Commun. 1965 Jul 12;20(2):135–141. doi: 10.1016/0006-291x(65)90336-0. [DOI] [PubMed] [Google Scholar]
  18. ESTABROOK R. W., COOPER D. Y., ROSENTHAL O. THE LIGHT REVERSIBLE CARBON MONOXIDE INHIBITION OF THE STEROID C21-HYDROXYLASE SYSTEM OF THE ADRENAL CORTEX. Biochem Z. 1963;338:741–755. [PubMed] [Google Scholar]
  19. Ernster L., Orrenius S. Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed Proc. 1965 Sep-Oct;24(5):1190–1199. [PubMed] [Google Scholar]
  20. FLEISCHER S., BRIERLEY G., KLOUWEN H., SLAUTTERBACK D. B. Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem. 1962 Oct;237:3264–3272. [PubMed] [Google Scholar]
  21. FOUTS J. R., ADAMSON R. H. Drug metabolism in the newborn rabbit. Science. 1959 Apr 3;129(3353):897–898. doi: 10.1126/science.129.3353.897. [DOI] [PubMed] [Google Scholar]
  22. GARFINKEL D. Isolation and properties of cytochrome b5 from pig liver. Arch Biochem Biophys. 1957 Sep;71(1):111–120. doi: 10.1016/0003-9861(57)90012-7. [DOI] [PubMed] [Google Scholar]
  23. GORSKI J., AIZAWA Y., MUELLER G. C. Effect of puromycin in vivo on the synthesis of protein, RNA and phospholipids in rat tissues. Arch Biochem Biophys. 1961 Dec;95:508–511. doi: 10.1016/0003-9861(61)90183-7. [DOI] [PubMed] [Google Scholar]
  24. HERDSON P. B., GARVIN P. J., JENNINGS R. B. FINE STRUCTURAL CHANGES IN RAT LIVER INDUCED BY PHENOBARBITAL. Lab Invest. 1964 Sep;13:1032–1037. [PubMed] [Google Scholar]
  25. Hochstein P., Nordenbrand K., Ernster L. Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem Biophys Res Commun. 1964;14:323–328. doi: 10.1016/s0006-291x(64)80004-8. [DOI] [PubMed] [Google Scholar]
  26. KEKWICK R. A. The serum proteins of the fetus and young of some mammals. Adv Protein Chem. 1959;14:231–254. doi: 10.1016/s0065-3233(08)60612-9. [DOI] [PubMed] [Google Scholar]
  27. KORNFELD R., BROWN D. H. The activity of some enzymes of glycogen metabolism in fetal and neonatal guinea pig liver. J Biol Chem. 1963 May;238:1604–1607. [PubMed] [Google Scholar]
  28. KRETCHMER N. Enzymatic patterns during development; an approach to a biochemical definition of immaturity. Pediatrics. 1959 Mar;23(3):606–617. [PubMed] [Google Scholar]
  29. LESTER R. L., FLEISCHER S. Studies on the electron-transport system. 27. The respiratory activity of acetoneextracted beef-heart mitochondria: role of coenzyme Q and other lipids. Biochim Biophys Acta. 1961 Feb 18;47:358–377. doi: 10.1016/0006-3002(61)90297-9. [DOI] [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Lea M. A., Walker D. G. The metabolism of glucose 6-phosphate in developing mammalian tissues. Biochem J. 1964 Jun;91(3):417–424. doi: 10.1042/bj0910417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MARCO G. J., MACHLIN L. J., EMERY E., GORDON R. S. Dietary effects of fats upon fatty acid composition of the mitochondria. Arch Biochem Biophys. 1961 Jul;94:115–120. doi: 10.1016/0003-9861(61)90017-0. [DOI] [PubMed] [Google Scholar]
  33. MARTONOSI A. ROLE OF PHOSPHOLIPIDS IN ATPASE ACTIVITY AND CA TRANSPORT OF FRAGMENTED SARCOPLASMIC RETICULUM. Fed Proc. 1964 Sep-Oct;23:913–921. [PubMed] [Google Scholar]
  34. MOHRHAUER H., HOLMAN R. T. THE EFFECT OF DIETARY ESSENTIAL FATTY ACIDS UPON COMPOSITION OF POLYUNSATURATED FATTY ACIDS IN DEPOT FAT AND ERYTHROCYTES OF THE RAT. J Lipid Res. 1963 Jul;4:346–350. [PubMed] [Google Scholar]
  35. MORIN R. J. EFFECTS OF 4-DIMETHYLAMINOAZOBENZENE ON HEPATIC MICROSOMAL PHOSPHOLIPIDS. Cancer Res. 1965 Feb;25:118–123. [PubMed] [Google Scholar]
  36. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. NEMETH A. M., DICKERMAN H. Pyridine nucleotides and diphosphopyridine nucleotidase in developing mammalian tissues. J Biol Chem. 1960 Jun;235:1761–1764. [PubMed] [Google Scholar]
  38. NEMETH A. M. Glucose-6-phosphatase in the liver of the fetal guinea pig. J Biol Chem. 1954 Jun;208(2):773–776. [PubMed] [Google Scholar]
  39. NISHIBAYASHI H., OMURA T., SATO R. A flavoprotein oxidizing NADPH isolated from liver microsomes. Biochim Biophys Acta. 1963 Mar 12;67:520–522. doi: 10.1016/0006-3002(63)91861-4. [DOI] [PubMed] [Google Scholar]
  40. OLIVER I. T., BALLARD F. J., SHIELD J., BENTLEY P. J. Liver growth in early postpartum rat. Dev Biol. 1962 Feb;4:108–116. doi: 10.1016/0012-1606(62)90035-0. [DOI] [PubMed] [Google Scholar]
  41. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  42. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  43. Omura T., Sato R., Cooper D. Y., Rosenthal O., Estabrook R. W. Function of cytochrome P-450 of microsomes. Fed Proc. 1965 Sep-Oct;24(5):1181–1189. [PubMed] [Google Scholar]
  44. Orrenius S., Dallner G., Ernster L. Inhibition of the TPNH-linked lipid peroxidation of liver microsomes by drugs undergoing oxidative demethylation. Biochem Biophys Res Commun. 1964;14:329–334. doi: 10.1016/s0006-291x(64)80005-x. [DOI] [PubMed] [Google Scholar]
  45. Orrenius S., Ericsson J. L., Ernster L. Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J Cell Biol. 1965 Jun;25(3):627–639. doi: 10.1083/jcb.25.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Orrenius S., Ernster L. Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes. Biochem Biophys Res Commun. 1964 May 22;16(1):60–65. doi: 10.1016/0006-291x(64)90211-6. [DOI] [PubMed] [Google Scholar]
  47. PENN N., MACKLER B. Microsomal DPNH cytochrome c reductase. Biochim Biophys Acta. 1958 Mar;27(3):539–543. doi: 10.1016/0006-3002(58)90383-4. [DOI] [PubMed] [Google Scholar]
  48. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  49. REICH E. BIOCHEMISTRY OF ACTINOMYCINS. Cancer Res. 1963 Sep;23:1428–1441. [PubMed] [Google Scholar]
  50. REICH E., FRANKLIN R. M., SHATKIN A. J., TATUM E. L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science. 1961 Aug 25;134(3478):556–557. doi: 10.1126/science.134.3478.556. [DOI] [PubMed] [Google Scholar]
  51. REMMER H., MERKER H. J. DRUG-INDUCED CHANGES IN THE LIVER ENDOPLASMIC RETICULUM: ASSOCIATION WITH DRUG-METABOLIZING ENZYMES. Science. 1963 Dec 27;142(3600):1657–1658. doi: 10.1126/science.142.3600.1657. [DOI] [PubMed] [Google Scholar]
  52. REVEL M., HIATT H. H., REVEL J. P. ACTINOMYCIN D: AN EFFECT ON RAT LIVER HOMOGENATES UNRELATED TO ITS ACTION ON RNA SYNTHESIS. Science. 1964 Dec 4;146(3649):1311–1313. doi: 10.1126/science.146.3649.1311. [DOI] [PubMed] [Google Scholar]
  53. REVEL M., HIATT H. H., REVEL J. P. ACTINOMYCIN D: AN EFFECT ON RAT LIVER HOMOGENATES UNRELATED TO ITS ACTION ON RNA SYNTHESIS. Science. 1964 Dec 4;146(3649):1311–1313. doi: 10.1126/science.146.3649.1311. [DOI] [PubMed] [Google Scholar]
  54. SCHOEFL G. I. THE EFFECT OF ACTINOMYCIN D ON THE FINE STRUCTURE OF THE NUCLEOLUS. J Ultrastruct Res. 1964 Apr;10:224–243. doi: 10.1016/s0022-5320(64)80007-1. [DOI] [PubMed] [Google Scholar]
  55. SEGAL H. L., WASHKO M. E. Studies of liver glucose 6-phosphatase. III. Solubilization and properties of the enzyme from normal and diabetic rats. J Biol Chem. 1959 Aug;234(8):1937–1941. [PubMed] [Google Scholar]
  56. SIEKEVITZ P., LOW H., ERNSTER L., LINDBERG O. On a possible mechanism of the adenosinetriphosphatase of liver mitochondria. Biochim Biophys Acta. 1958 Aug;29(2):378–391. doi: 10.1016/0006-3002(58)90197-5. [DOI] [PubMed] [Google Scholar]
  57. SIEKEVITZ P. Protoplasm: endoplasmic reticulum and microsomes and their properties. Annu Rev Physiol. 1963;25:15–40. doi: 10.1146/annurev.ph.25.030163.000311. [DOI] [PubMed] [Google Scholar]
  58. STRITTMATTER C. F. DIFFERENTIATION OF ELECTRON TRANSPORT SYSTEMS IN MITOCHONDRIA AND MICROSOMES DURING EMBRYONIC DEVELOPMENT. Arch Biochem Biophys. 1963 Aug;102:293–305. doi: 10.1016/0003-9861(63)90183-8. [DOI] [PubMed] [Google Scholar]
  59. STRITTMATTER P., VELICK S. F. A microsomal cytochrome reductase specific for diphosphopyridine nucleotide. J Biol Chem. 1956 Jul;221(1):277–286. [PubMed] [Google Scholar]
  60. STRITTMATTER P., VELICK S. F. The purification and properties of microsomal cytochrome reductase. J Biol Chem. 1957 Oct;228(2):785–799. [PubMed] [Google Scholar]
  61. SWANSON M. A. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950 Jun;184(2):647–659. [PubMed] [Google Scholar]
  62. VILLEE C. A., HAGERMAN D. D. Effect of oxygen deprivation on the metabolism of fetal and adult tissues. Am J Physiol. 1958 Sep;194(3):457–464. doi: 10.1152/ajplegacy.1958.194.3.457. [DOI] [PubMed] [Google Scholar]
  63. WEBER G., CANTERO A. Glucose-6-phosphatase activity in regenerating, embryonic, and newborn rat liver. Cancer Res. 1955 Nov;15(10):679–684. [PubMed] [Google Scholar]
  64. WILLIAMS C. H., Jr, GIBBS R. H., KAMIN H. A microsomal TPNH-neotetrazolium diaphorase. Biochim Biophys Acta. 1959 Apr;32:568–569. doi: 10.1016/0006-3002(59)90643-2. [DOI] [PubMed] [Google Scholar]
  65. WILLIAMS C. H., Jr, KAMIN H. Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem. 1962 Feb;237:587–595. [PubMed] [Google Scholar]
  66. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES