Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Aug 1;30(2):359–379. doi: 10.1083/jcb.30.2.359

ADENOSINE TRIPHOSPHATASE LOCALIZATION IN AMPHIBIAN EPIDERMIS

Marilyn G Farquhar 1, George E Palade 1
PMCID: PMC2107002  PMID: 4226195

Abstract

The localization of ATPase1 activity has been studied by light and electron microscopy in the epidermis of Rana pipiens, Rana catesbiana, and Bufo marinus. The reaction was carried out on skin (glutaraldehyde-fixed or fresh) sectioned with or without freezing. Best results were obtained with nonfrozen sections of fixed tissue. The incubation mixture was either a Wachstein-Meisel medium, or a modification which approximates assay systems used in biochemical studies of transport ATPases. The reaction product was found localized in contact with the outer leaflet of all cell membranes facing the labyrinth of intercellular spaces of the epidermis. It was absent from: (a) membrane areas involved in cell junctions (desmosomes, zonulae and maculae occludentes); (b) cell membranes facing the external medium (i.e., those on the distal aspect of the ultimate cell layer in s. corneum); (c) cell membranes facing the dermis (those on the proximal aspect of cells in s. germinativum). In the presence of (Na+ + K+) the localization did not change, but the reaction was not appreciably activated. A similar though less intense reaction was obtained with ITP, but not with ADP, AMP, and GP as substrates. The results are discussed in relation to available data on transport ATPases in general, and on the morphology and physiology of amphibian skin in particular. Assuming that the ATPase studied is related to transport ATPase, the findings suggest a series of modifications to the frog skin model proposed by Koefoed-Johnsen and Ussing. The salient feature of this modified model is the localization of the Na+ pump along all cell membranes facing the intercellular spaces of the epidermis.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., FAHN S., KOVAL G. J. THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE. Proc Natl Acad Sci U S A. 1963 Sep;50:474–481. doi: 10.1073/pnas.50.3.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARCHDEACON J. W., ROHRS, HC, MARTA H. SODIUM AND POTASSIUM CONTENTS OF RABBIT AND CAT MARROW CELLS AND SODIUM- AND POTASSIUM-STIMULATED ATPASE. Biochim Biophys Acta. 1964 Mar 16;82:647–649. doi: 10.1016/0304-4165(64)90469-6. [DOI] [PubMed] [Google Scholar]
  3. ASKARI A., FRATANTONI J. C. EFFECT OF MONOVALENT CATIONS ON THE ADENOSINETRIPHOSPHATASE OF SONICATED ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1964 Oct 23;92:132–141. doi: 10.1016/0926-6569(64)90277-9. [DOI] [PubMed] [Google Scholar]
  4. Ahmed K., Judah J. D. Identification of active phosphoprotein in a cation-activated adenosine triphosphatase. Biochim Biophys Acta. 1965 Jun 15;104(1):112–120. doi: 10.1016/0304-4165(65)90227-8. [DOI] [PubMed] [Google Scholar]
  5. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BARRNETT R. J. LOCALIZATION OF ENZYMATIC ACTIVITY AT THE FINE STRUCTURAL LEVEL. J R Microsc Soc. 1964 Jun;83:143–151. doi: 10.1111/j.1365-2818.1964.tb00523.x. [DOI] [PubMed] [Google Scholar]
  7. BARTOSZEWICZ W., BARRNETT R. J. FINE STRUCTURAL LOCALIZATION OF NUCLEOSIDE PHOSPHATASE ACTIVITY IN THE URINARY BLADDER OF THE TOAD. J Ultrastruct Res. 1964 Jun;10:599–609. doi: 10.1016/s0022-5320(64)80033-2. [DOI] [PubMed] [Google Scholar]
  8. BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
  9. BONTING S. L., CARAVAGGIO L. L. Sodium-potassium-activated adenosine triphosphatase in the squid giant axon. Nature. 1962 Jun 23;194:1180–1181. doi: 10.1038/1941180a0. [DOI] [PubMed] [Google Scholar]
  10. CHARNOCK J. S., POST R. L. STUDIES OF THE MECHANISM OF CATION TRANSPORT. I. THE PREPARATION AND PROPERTIES OF A CATION-STIMULATED ADENOSINE-TRIPHOSPHATASE FROM GUINEA PIG KIDNEY CORTEX. Aust J Exp Biol Med Sci. 1963 Oct;41:547–560. [PubMed] [Google Scholar]
  11. CHARNOCK J. S., ROSENTHAL A. S., POST R. L. STUDIES OF THE MECHANISM OF CATION TRANSPORT. II. A PHOSPHORLATED INTERMEDIATE IN THE CATION STIMULATED ENZYMIC HYDROLYSIS OF ADENOSINE TRIPHOSPHATE. Aust J Exp Biol Med Sci. 1963 Dec;41:675–686. doi: 10.1038/icb.1963.56. [DOI] [PubMed] [Google Scholar]
  12. CHOWDHURY T. K., SNELL F. M. A MICROELECTRODE STUDY OF ELECTRICAL POTENTIALS IN FROG SKIN AND TOAD BLADDER. Biochim Biophys Acta. 1965 Mar 29;94:461–471. doi: 10.1016/0926-6585(65)90054-3. [DOI] [PubMed] [Google Scholar]
  13. CUMMINS J., HYDEN H. Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim Biophys Acta. 1962 Jul 2;60:271–283. doi: 10.1016/0006-3002(62)90403-1. [DOI] [PubMed] [Google Scholar]
  14. Curran P. F., Cereijido M. K fluxes in frog skin. J Gen Physiol. 1965 Jul;48(6):1011–1033. doi: 10.1085/jgp.48.6.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DEUL D. H., McILWAIN H. Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J Neurochem. 1961 Dec;8:246–256. doi: 10.1111/j.1471-4159.1961.tb13550.x. [DOI] [PubMed] [Google Scholar]
  16. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. FARQUHAR M. G., PALADE G. E. FUNCTIONAL ORGANIZATION OF AMPHIBIAN SKIN. Proc Natl Acad Sci U S A. 1964 Apr;51:569–577. doi: 10.1073/pnas.51.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GOLDFISCHER S., ESSNER E., NOVIKOFF A. B. THE LOCALIZATION OF PHOSPHATASE ACTIVITIES AT THE LEVEL OF ULTRASTRUCTURE. J Histochem Cytochem. 1964 Feb;12:72–95. doi: 10.1177/12.2.72. [DOI] [PubMed] [Google Scholar]
  22. HANSEN H. H., ZERAHN K. CONCENTRATION OF LITHIUM, SODIUM AND POTASSIUM IN EPITHELIAL CELLS OF THE ISOLATED FROG SKIN DURING ACTIVE TRANSPORT OF LITHIUM. Acta Physiol Scand. 1964 Jan-Feb;60:189–196. doi: 10.1111/j.1748-1716.1964.tb02882.x. [DOI] [PubMed] [Google Scholar]
  23. HOKIN L. E., REASA D. EFFECT OF PREINCUBATION OF ERYTHROCYTE GHOSTS ON OUABAIN-SENSITIVE AND OUABAIN-INSENSITIVE ADENOSINE TRIPHOSPHATASE. Biochim Biophys Acta. 1964 Jul 15;90:176–177. doi: 10.1016/0304-4165(64)90134-5. [DOI] [PubMed] [Google Scholar]
  24. HOKIN M. R. STUDIES ON A NA+ + K+-DEPENDENT, OUABAIN-SENSITIVE ADENOSINE TRIPHOSPHATASE IN THE AVIAN SALT GLAND. Biochim Biophys Acta. 1963 Sep 3;77:108–120. doi: 10.1016/0006-3002(63)90473-6. [DOI] [PubMed] [Google Scholar]
  25. Imamura A., Takeda H., Sasaki N. The accumulation of sodium and calcium in a specific layer of frog skin. J Cell Physiol. 1965 Oct;66(2):221–225. doi: 10.1002/jcp.1030660208. [DOI] [PubMed] [Google Scholar]
  26. JARRETT A., RILEY P. A. Esterase activity in dendritic cells. Br J Dermatol. 1963 Feb;75:79–81. doi: 10.1111/j.1365-2133.1963.tb13941.x. [DOI] [PubMed] [Google Scholar]
  27. KINSOLVING C. R., POST R. L., BEAVER D. L. SODIUM PLUS POTASSIUM TRANSPORT ADENOSINE TRIPHOSPHATASE ACTIVITY IN KIDNEY. J Cell Physiol. 1963 Aug;62:85–93. doi: 10.1002/jcp.1030620110. [DOI] [PubMed] [Google Scholar]
  28. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  29. LANDON E. J., NORRIS J. L. Sodium- and potassium-dependent adenosine triphosphatase activity in a rat-kidney endoplasmic reticulum fraction. Biochim Biophys Acta. 1963 May 14;71:266–276. doi: 10.1016/0006-3002(63)91081-3. [DOI] [PubMed] [Google Scholar]
  30. LEAF A., RENSHAW A. Ion transport and respiration of isolated frog skin. Biochem J. 1957 Jan;65(1):82–90. doi: 10.1042/bj0650082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. MUSTAKALLIO K. Adenosine triphosphatase activity in neural elements of human epidermis. Exp Cell Res. 1962 Nov;28:449–451. doi: 10.1016/0014-4827(62)90303-8. [DOI] [PubMed] [Google Scholar]
  32. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  33. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  34. ROBERTSON J. D., BODENHEIMER T. S., STAGE D. E. THE ULTRASTRUCTURE OF MAUTHNER CELL SYNAPSES AND NODES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:159–199. doi: 10.1083/jcb.19.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ROSE S. P. PHOSPHOPROTEIN AS AN INTERMEDIATE IN CEREBRAL MICROSOMAL ADENOSINETRIPHOSPHATASE. Nature. 1963 Jul 27;199:375–377. doi: 10.1038/199375b0. [DOI] [PubMed] [Google Scholar]
  36. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. SCHWARTZ A. A Na K-stimulated adenosine triphosphatase in "microsomal" fractions from rat liver. Biochim Biophys Acta. 1963 Feb 12;67:329–331. doi: 10.1016/0006-3002(63)91834-1. [DOI] [PubMed] [Google Scholar]
  38. SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SCHWARTZ A., LASETER A. H. A SODIUM AND POTASSIUM-STIMULATED ADENOSINE TRIPHOSPHATASE FROM CARDIAC TISSUES. 3. THE PROPERTIES OF AN ENDOGENOUS INHIBITORY FACTOR. Biochem Pharmacol. 1964 Jun;13:921–934. doi: 10.1016/0006-2952(64)90035-8. [DOI] [PubMed] [Google Scholar]
  40. SCHWARTZ A., LASETER A. H., KRAINTZ L. AN ENZYMATIC BASIS FOR ACTIVE CATION TRANSPORT IN THE PAROTID GLAND. J Cell Physiol. 1963 Oct;62:193–205. doi: 10.1002/jcp.1030620208. [DOI] [PubMed] [Google Scholar]
  41. SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
  42. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  43. SMITH R. E., FARQUHAR M. G. PREPARATION OF THICK SECTIONS FOR CYTOCHEMISTRY AND ELECTRON MICROSCOPY BY A NON-FREEZING TECHNIQUE. Nature. 1963 Nov 16;200:691–691. doi: 10.1038/200691a0. [DOI] [PubMed] [Google Scholar]
  44. Skou J. C., Hilberg C. The effect of sulphydryl-blocking reagents and of urea on the (Na+ + K+)-activated enzyme system. Biochim Biophys Acta. 1965 Nov 22;110(2):359–369. doi: 10.1016/s0926-6593(65)80043-1. [DOI] [PubMed] [Google Scholar]
  45. Taylor R. E., Jr, Taylor H. C., Barker S. B. Chemical and morphological studies on inorganic phosphate deposits in Rana catesbeiana skin. J Exp Zool. 1966 Mar;161(2):271–285. doi: 10.1002/jez.1401610210. [DOI] [PubMed] [Google Scholar]
  46. WACHSTEIN M., BESEN M. ELECTRON MICROSCOPIC STUDY IN SEVERAL MAMMALIAN SPECIES OF THE REACTION PRODUCT ENZYMATICALLY LIBERATED FROM ADENOSINE TRIPHOSPHATE IN THE KIDNEY. Lab Invest. 1964 May;13:476–489. [PubMed] [Google Scholar]
  47. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  48. WHITTAM R., WHEELER K. P. The sensitivity of a kidney ATPase to ouabain and to sodium and potassium. Biochim Biophys Acta. 1961 Aug 19;51:622–624. doi: 10.1016/0006-3002(61)90633-3. [DOI] [PubMed] [Google Scholar]
  49. WOLFF J., HALMI N. S. Thyroidal iodide transport. V. The role of Na-K-activated, ouabain-sensitive adenosinetriphosphatase activity. J Biol Chem. 1963 Feb;238:847–851. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES