Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Sep 1;30(3):563–578. doi: 10.1083/jcb.30.3.563

ULTRASTRUCTURE OF THE CAROTID BODY

T J Biscoe 1, W E Stehbens 1
PMCID: PMC2107013  PMID: 5971007

Abstract

An electron microscope investigation was made of the carotid body in the cat and the rabbit. In thin-walled blood vessels the endothelium was fenestrated. Larger vessels were surrounded by a layer of smooth muscle fibers. Among the numerous blood vessels lay groups of cells of two types covered by basement membranes. Aggregates of Type I cells were invested by Type II cells, though occasionally cytoplasmic extensions were covered by basement membrane only. Type I cells contained many electron-opaque cored vesicles (350 to 1900 A in diameter) resembling those in endocrine secretory cells. Type II cells covered nerve endings terminating on Type I cells and enclosed nerve fibers in much the same manner as Schwann cells. The nerve endings contained numerous microvesicles (∼500 A in diameter), mitochondria, glycogen granules, and a few electron-opaque cored vesicles. Junctions between nerve endings and Type I cells were associated with regions of increased density in both intercellular spaces and the adjoining cytoplasm. Cilia of the 9 + 0 fibril pattern were observed in Type I and Type II cells and pericytes. Nonmyelinated nerve fibers, often containing microvesicles, mitochondria, and a few electron-opaque cored vesicles (650 to 1000 A in diameter) were present in Schwann cells, many of which were situated close to blood vessels Ganglion cells near the periphery of the gland, fibrocytes, and segments of unidentified cells were also seen. It was concluded that, according to present concepts of the structure of nerve endings, those endings related to Type I cells could be efferent or afferent.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Bari W., Sorenson G. D. Ciliated cells in the spleen of adult rats. Anat Rec. 1965 Aug;152(4):481–485. doi: 10.1002/ar.1091520407. [DOI] [PubMed] [Google Scholar]
  2. BARNES B. G. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res. 1961 Oct;5:453–467. doi: 10.1016/s0022-5320(61)80019-1. [DOI] [PubMed] [Google Scholar]
  3. BRIGHTMAN M. W., PALAY S. L. THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT. J Cell Biol. 1963 Nov;19:415–439. doi: 10.1083/jcb.19.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bensch K. G., Gordon G. B., Miller L. R. Studies on the bronchial counterpart of the Kultschitzky (argentaffin) cell and innervation of bronchial glands. J Ultrastruct Res. 1965 Jun;12(5):668–686. doi: 10.1016/s0022-5320(65)80055-7. [DOI] [PubMed] [Google Scholar]
  5. Bondareff W. Submicroscopic morphology of granular vesicles in sympathetic nerves of rat pineal body. Z Zellforsch Mikrosk Anat. 1965 Jul 15;67(2):211–218. doi: 10.1007/BF00344470. [DOI] [PubMed] [Google Scholar]
  6. Capen C. C., Koestner A., Cole C. R. The ultrastructure and histochemistry of normal parathyroid glands of pregnant and nonpregnant cows. Lab Invest. 1965 Sep;14(9):1673–1690. [PubMed] [Google Scholar]
  7. DE BURGH DALY M., LAMBERTSEN C. J., SCHWEITZER A. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J Physiol. 1954 Jul 28;125(1):67–89. doi: 10.1113/jphysiol.1954.sp005143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE CASTRO F. Sur la structure de la synapse dans les chemocepteurs; leur mécanisme d'excitation et rôle dans la circulation sanguine locale. Acta Physiol Scand. 1951 Feb 21;22(1):14–43. doi: 10.1111/j.1748-1716.1951.tb00747.x. [DOI] [PubMed] [Google Scholar]
  9. DE KOCK L. L. The intra-glomerular tissues of the carotid body. Acta Anat (Basel) 1954;21(2):101–116. doi: 10.1159/000140922. [DOI] [PubMed] [Google Scholar]
  10. DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EAKIN R. M., WESTFALL J. A. Further observations on the fine structure of the parietal eye of lizards. J Biophys Biochem Cytol. 1960 Oct;8:483–499. doi: 10.1083/jcb.8.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. EKHOLM R., SJOSTRAND F. S. The ultrastructural organization of the mouse thyroid gland. J Ultrastruct Res. 1957 Dec;1(2):178–199. doi: 10.1016/s0022-5320(57)80006-9. [DOI] [PubMed] [Google Scholar]
  13. ELFVIN L. G. Electron microscopic investigation of the plasma membrane and myelin sheath of autonomic nerve fibers in the cat. J Ultrastruct Res. 1961 Aug;5:388–407. doi: 10.1016/s0022-5320(61)80015-4. [DOI] [PubMed] [Google Scholar]
  14. ENGSTROM H., HAMBERGER C. A., HOLMER M., RIGNELL N. S. The carotid body. Acta Otolaryngol. 1957 Nov-Dec;48(5-6):379–389. doi: 10.3109/00016485709126898. [DOI] [PubMed] [Google Scholar]
  15. EYZAGUIRRE C., LEWIN J. The effect of sympathetic stimulation on carotid nerve activity. J Physiol. 1961 Dec;159:251–267. doi: 10.1113/jphysiol.1961.sp006806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eyzaguirre C., Koyano H. Effects of some pharmacological agents on chemoreceptor discharges. J Physiol. 1965 Jun;178(3):410–437. doi: 10.1113/jphysiol.1965.sp007635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eyzaguirre C., Koyano H., Taylor J. R. Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J Physiol. 1965 Jun;178(3):463–476. doi: 10.1113/jphysiol.1965.sp007637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. FARQUHAR M. G., WELLINGS S. R. Electron microscopic evidence suggesting secretory granule formation within the Golgi apparatus. J Biophys Biochem Cytol. 1957 Mar 25;3(2):319–322. doi: 10.1083/jcb.3.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. FLOYD W. F., NEIL E. The influence of the sympathetic innervation of the carotid bifurcation on chemoceptor and baroceptor activity in the cat. Arch Int Pharmacodyn Ther. 1952 Sep 1;91(1-2):230–239. [PubMed] [Google Scholar]
  21. GARNER C. M., DUNCAN D. Observations on the fine structure of the carotid body. Anat Rec. 1958 Apr;130(4):691–709. doi: 10.1002/ar.1091300406. [DOI] [PubMed] [Google Scholar]
  22. GRILLO M. A., PALAY S. L. Ciliated Schwann cells in the autonomic nervous system of the adult rat. J Cell Biol. 1963 Feb;16:430–436. doi: 10.1083/jcb.16.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HOFFMAN H., BIRRELL J. H. The carotid body in normal and anoxic states: an electron microscopic study. Acta Anat (Basel) 1958;32(4):297–311. doi: 10.1159/000141332. [DOI] [PubMed] [Google Scholar]
  24. HOGAN M. J., FEENEY L. THE ULTRASTRUCTURE OF THE RETINAL VESSELS. II. THE SMALL VESSELS. J Ultrastruct Res. 1963 Aug;49:29–46. doi: 10.1016/s0022-5320(63)80034-9. [DOI] [PubMed] [Google Scholar]
  25. LEVER J. D., ESTERHUIZEN A. C. Fine structure of the arteriolar nerves in the guinea pig pancreas. Nature. 1961 Nov 11;192:566–567. doi: 10.1038/192566a0. [DOI] [PubMed] [Google Scholar]
  26. LEVER J. D. Electron microscopic observations on the normal and denervated adrenal medulla of the rat. Endocrinology. 1955 Nov;57(5):621–635. doi: 10.1210/endo-57-5-621. [DOI] [PubMed] [Google Scholar]
  27. LEVER J. D., LEWIS P. R., BOYD J. D. Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit. J Anat. 1959 Oct;93:478–490. [PMC free article] [PubMed] [Google Scholar]
  28. LILJESTRAND G. Transmission at chemoreceptors. Pharmacol Rev. 1954 Mar;6(1):73–78. [PubMed] [Google Scholar]
  29. Munger B. L., Caramia F., Lacy P. E. The ultrastructural basis for the identification of cell types in the pancreatic islets. II. Rabbit, dog and opossum. Z Zellforsch Mikrosk Anat. 1965 Sep 17;67(6):776–798. doi: 10.1007/BF00339301. [DOI] [PubMed] [Google Scholar]
  30. PALADE G. E. Blood capillaries of the heart and other organs. Circulation. 1961 Aug;24:368–388. doi: 10.1161/01.cir.24.2.368. [DOI] [PubMed] [Google Scholar]
  31. PRYSE-DAVIES J., DAWSON I. M. SOME MORPHOLOGIC, HISTOCHEMICAL, AND CHEMICAL OBSERVATIONS ON CHEMODECTOMAS AND THE NORMAL CAROTID BODY, INCLUDING A STUDY OF THE CHROMAFFIN REACTION AND POSSIBLE GANGLION CELL ELEMENTS. Cancer. 1964 Feb;17:185–202. doi: 10.1002/1097-0142(196402)17:2<185::aid-cncr2820170208>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  32. REVEL J. P. ELECTRON MICROSCOPY OF GLYCOGEN. J Histochem Cytochem. 1964 Feb;12:104–114. doi: 10.1177/12.2.104. [DOI] [PubMed] [Google Scholar]
  33. RICHARDSON K. C. THE FINE STRUCTURE OF THE ALBINO RABBIT IRIS WITH SPECIAL REFERENCE TO THE IDENTIFICATION OF ADRENERGIC AND CHOLINERGIC NERVES AND NERVE ENDINGS IN ITS INTRINSIC MUSCLES. Am J Anat. 1964 Mar;114:173–205. doi: 10.1002/aja.1001140202. [DOI] [PubMed] [Google Scholar]
  34. RICHARDSON K. C. The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. J Anat. 1962 Oct;96:427–442. [PMC free article] [PubMed] [Google Scholar]
  35. ROGERS D. C. DISTINCTIVE CELL TYPES IN THE AMPHIBIAN CAROTID LABYRINTH. Nature. 1963 Nov 2;200:492–493. doi: 10.1038/200492b0. [DOI] [PubMed] [Google Scholar]
  36. ROGERS D. C. THE DEVELOPMENT OF THE RAT CAROTID BODY. J Anat. 1965 Jan;99:89–101. [PMC free article] [PubMed] [Google Scholar]
  37. ROSS L. L. Electron microscopic observations of the carotid body of the cat. J Biophys Biochem Cytol. 1959 Oct;6:253–262. doi: 10.1083/jcb.6.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rodin A. E., Turner R. A. The relationship of intravesicular granules to the innervation of the pineal gland. Lab Invest. 1965 Sep;14(9):1644–1651. [PubMed] [Google Scholar]
  40. SPOENDLIN H. H., GACEK R. R. ELECTRON MICROSCOPIC STUDY OF THE EFFERENT AND AFFERENT INNERVATION OF THE ORGAN OF CORTI IN THE CAT. Ann Otol Rhinol Laryngol. 1963 Sep;72:660–686. doi: 10.1177/000348946307200307. [DOI] [PubMed] [Google Scholar]
  41. Seitz H. M. Zur elektronenmikroskopischen Morphologie des Neurosekrets im Hypophysenstiel des Schweins. Z Zellforsch Mikrosk Anat. 1965 Jul 30;67(3):351–366. [PubMed] [Google Scholar]
  42. Stehbens W. E. Ultrastructure of vascular endothelium in the frog. Q J Exp Physiol Cogn Med Sci. 1965 Oct;50(4):375–384. doi: 10.1113/expphysiol.1965.sp001804. [DOI] [PubMed] [Google Scholar]
  43. WOLFE D. E., POTTER L. T., RICHARDSON K. C., AXELROD J. Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science. 1962 Oct 19;138(3538):440–442. doi: 10.1126/science.138.3538.440. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES