Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Sep 1;30(3):601–621. doi: 10.1083/jcb.30.3.601

PHYSICOCHEMICAL DIFFERENCES BETWEEN FRAGMENTS OF PLASMA MEMBRANE AND ENDOPLASMIC RETICULUM

Donald F Hoelzl Wallach 1, Virendra B Kamat 1, Mitchell H Gail 1
PMCID: PMC2107017  PMID: 5971008

Abstract

Specific turbidities, densities, and refractive indices of fragments of plasma membrane (PM) and endoplasmic reticulum (ER) from Ehrlich ascites carcinoma have been measured. A spherical shell model of specified dimensions and refractive index was established for PM fragments. The ionic composition of the dispersion medium was varied systematically. Increases in Γ/2 caused increases in the turbidity of both PM and ER suspensions, the greatest effects being observed with Ca2+ and Mg2+. In the case of PM this effect is attributable mainly to aggregation, whereas "structural" changes account for most of the turbidity increase with ER. The pH was also varied systematically to obtain pH- density and turbidity profiles and to establish the isoelectric pH of the two membrane types (PM—3.6; ER—4.35). Turbidity was maximum at "isoelectric" pH, which corresponds in each case to the region of minimum charge on the particle surfaces. Both PM and ER show large increases of density at the "isoelectric" pH, but only ER shows substantial structurally based turbidity increase under these conditions. Both PM and ER show operation of electrostatic attractions near "isoelectric" pH. PM has been shown to have ionically distinctive inner and outer surfaces while ER shows no such dissymmetry. The necessary theoretical background for interpretation of turbidity and density measurements is included, as well as a discussion of the limitations of our conclusions and the biological importance of our results.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., AMBROSE E. J. The surface properties of cancer cells: a review. Cancer Res. 1962 Jun;22:525–548. [PubMed] [Google Scholar]
  2. ABRAMSON M. B., KATZMAN R., GREGOR H. P. AQUEOUS DISPERSIONS OF PHOSPHATIDYLSERINE. IONIC PROPERTIES. J Biol Chem. 1964 Jan;239:70–76. [PubMed] [Google Scholar]
  3. ABRAMSON M. B., KATZMAN R., WILSON C. E., GREGOR H. P. IONIC PROPERTIES OF AQUEOUS DISPERSIONS OF PHOSPHATIDIC ACID. J Biol Chem. 1964 Dec;239:4066–4072. [PubMed] [Google Scholar]
  4. BANGHAM A. D., GLOVER J. C., HOLLINGSHEAD S., PETHICA B. A. The surface properties of some neoplastic cells. Biochem J. 1962 Sep;84:513–517. doi: 10.1042/bj0840513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COOK G. M., HEARD D. H., SEAMAN G. V. The electrokinetic characterization of the Ehrlich ascites carcinoma cell. Exp Cell Res. 1962 Oct;28:27–39. doi: 10.1016/0014-4827(62)90309-9. [DOI] [PubMed] [Google Scholar]
  6. DOGGENWEILER C. F., FRENK S. STAINING PROPERTIES OF LANTHANUM ON CELL MEMBRANES. Proc Natl Acad Sci U S A. 1965 Feb;53:425–430. doi: 10.1073/pnas.53.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAYDON D. A. The surface charge of cells and some other small particles as indicated by electrophoresis. II. The interpretation of the electrophoretic charge. Biochim Biophys Acta. 1961 Jul 8;50:457–462. doi: 10.1016/0006-3002(61)90004-x. [DOI] [PubMed] [Google Scholar]
  8. KAMAT V. B., WALLACH D. F. SEPARATION AND PARTIAL PURIFICATION OF PLASMA-MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA MICROSOMES. Science. 1965 Jun 4;148(3675):1343–1345. doi: 10.1126/science.148.3675.1343. [DOI] [PubMed] [Google Scholar]
  9. KOCH A. L. Some calculations on the turbidity of mitochondria and bacteria. Biochim Biophys Acta. 1961 Aug 19;51:429–441. doi: 10.1016/0006-3002(61)90599-6. [DOI] [PubMed] [Google Scholar]
  10. Kirkwood J. G., Shumaker J. B. Forces between Protein Molecules in Solution Arising from Fluctuations in Proton Charge and Configuration. Proc Natl Acad Sci U S A. 1952 Oct;38(10):863–871. doi: 10.1073/pnas.38.10.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LUCY J. A. GLOBULAR LIPID MICELLES AND CELL MEMBRANES. J Theor Biol. 1964 Sep;7:360–373. doi: 10.1016/0022-5193(64)90080-3. [DOI] [PubMed] [Google Scholar]
  12. OSTER G. The isoelectric points of some strains of tobacco mosaic virus. J Biol Chem. 1951 May;190(1):55–59. [PubMed] [Google Scholar]
  13. PETHICA B. A. The physical chemistry of cell adhesion. Exp Cell Res. 1961;Suppl 8:123–140. doi: 10.1016/0014-4827(61)90344-5. [DOI] [PubMed] [Google Scholar]
  14. STRAUMFJORD J. V., Jr, HUMMEL J. P. Anionicpolymers. IV. Microelectrophoresis of ascites tumor cells and the effect of polyxenylphosphate. Cancer Res. 1959 Oct;19:913–917. [PubMed] [Google Scholar]
  15. TEDESCHI H., JAMES J. M., ANTHONY W. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES. J Cell Biol. 1963 Sep;18:503–513. doi: 10.1083/jcb.18.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. THOMPSON T. E., McLEES B. D. An electrophoretic study of suspensions of intact mitochondria and fragments of mitochondrial membranes. Biochim Biophys Acta. 1961 Jun 24;50:213–223. doi: 10.1016/0006-3002(61)90319-5. [DOI] [PubMed] [Google Scholar]
  17. WALLACH D. F., EYLAR E. H. Sialic acid in the cellular membranes of Ehrlich ascites-carcinoma cells. Biochim Biophys Acta. 1961 Sep 30;52:594–596. doi: 10.1016/0006-3002(61)90424-3. [DOI] [PubMed] [Google Scholar]
  18. WALLACH D. F., HAGER E. B. Association of cell surface antigens with microsomal membrane fractions derived from Ehrlich ascites carcinoma cells. Nature. 1962 Dec 8;196:1004–1005. doi: 10.1038/1961004a0. [DOI] [PubMed] [Google Scholar]
  19. WALLACH D. F., KAMAT V. B. PLASMA AND CYTOPLASMIC MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA. Proc Natl Acad Sci U S A. 1964 Sep;52:721–728. doi: 10.1073/pnas.52.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WALLACH D. F., ULLREY D. STUDIES ON THE SURFACE AND CYTOPLASMIC MEMBRANES OF EHRLICH ASCITES CARCINOMA CELLS. II. ALKALI-CATION-ACTIVATED ADENOSINE TRIPHOSPHATE HYDROLYSIS IN A MICROSOMAL MEMBRANE FRACTION. Biochim Biophys Acta. 1964 Nov 29;88:620–629. doi: 10.1016/0926-6577(64)90104-4. [DOI] [PubMed] [Google Scholar]
  21. Whittam R., Ager M. E. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 1964 Nov;93(2):337–348. doi: 10.1042/bj0930337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES