Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1966 Oct 1;31(1):43–54. doi: 10.1083/jcb.31.1.43

DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA

Allan D Dingle 1, Chandler Fulton 1
PMCID: PMC2107041  PMID: 5971974

Abstract

Flagellates of Naegleria gruberi have an interconnected flagellar apparatus consisting of nucleus, rhizoplast and accessory filaments, basal bodies, and flagella. The structures of these components have been found to be similar to those in other flagellates. The development of methods for obtaining the relatively synchronous transformation of populations of Naegleria amebae into flagellates has permitted a study of the development of the flagellar apparatus. No indications of rhizoplast, basal body, or flagellum structures could be detected in amebae. A basal body appears and assumes a position at the cell surface with its filaments perpendicular to the cell membrane. Axoneme filaments extend from the basal body filaments into a progressive evagination of the cell membrane which becomes the flagellum sheath. Continued elongation of the axoneme filaments leads to differentiation of a fully formed flagellum with a typical "9 + 2" organization, within 10 min after the appearance of basal bodies.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. doi: 10.1083/jcb.5.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. RENAUD F. L., SWIFT H. THE DEVELOPMENT OF BASAL BODIES AND FLAGELLA IN ALLOMYCES ARBUSCULUS. J Cell Biol. 1964 Nov;23:339–354. doi: 10.1083/jcb.23.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ROTH L. E., SHIGENAKA Y. THE STRUCTURE AND FORMATION OF CILIA AND FILAMENTS IN RUMEN PROTOZOA. J Cell Biol. 1964 Feb;20:249–270. doi: 10.1083/jcb.20.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
  7. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). II. THE CYST STAGE. J Protozool. 1963 Aug;10:313–320. doi: 10.1111/j.1550-7408.1963.tb01682.x. [DOI] [PubMed] [Google Scholar]
  8. SOROKIN S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962 Nov;15:363–377. doi: 10.1083/jcb.15.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. SOTELO J. R., TRUJILLO-CENOZ O. Electron microscope study of the kinetic apparatus in animal sperm cells. Z Zellforsch Mikrosk Anat. 1958;48(5):565–601. doi: 10.1007/BF00342732. [DOI] [PubMed] [Google Scholar]
  10. TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES