Abstract
Electron microscope study of rat mast cell maturation corroborates certain interpretations of features of mast cell differentiation based on light microscope studies. In addition, the ultrastructural variation observed in the granules of differentiating mast cells suggests that granule formation begins with the elaboration of dense granules about 70 mµ in diameter inside Golgi vacuoles. These progranules appear to aggregate inside a membrane and fuse to form dense cords 70 to 100 mµ in diameter. These dense cords are embedded in a finely granular material possibly added to the developing granule by direct continuity between perigranular membranes and cisternae of rough endoplasmic reticulum. The dense cords and finely granular material then appear to be replaced by a mass of strands about 30 mµ in diameter, thought to be a reorganization product of the two formerly separate components. A process interpreted as compaction of the strands completes the formation of the dense, homogeneous granules observed in mature rat mast cells. The similarity between mast cell granule formation and the elaboration of other granules is considered, with special reference to rabbit polymorphonuclear leukocyte azurophil granules. The relationships between the ultrastructural, histochemical, and radioautographic characteristics of mast cell granule formation are considered, and the significance of the perigranular membrane is discussed.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom G. D., Haegermark O. A study on morphological changes and histamine release induced by compound 48/80 in rat peritoneal mast cells. Exp Cell Res. 1965 Dec;40(3):637–654. doi: 10.1016/0014-4827(65)90241-7. [DOI] [PubMed] [Google Scholar]
- Combs J. W., Lagunoff D., Benditt E. P. Differentiation and proliferation of embryonic mast cells of the rat. J Cell Biol. 1965 Jun;25(3):577–592. doi: 10.1083/jcb.25.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FEWER D., THREADGOLD J., ANDSHELDON H. STUDIES ON CARTILAGE. V. ELECTRON MICROSCOPIC OBSERVATIONS ON THE AUTORADIOGRAPHIC LOCALIZATION OF S35 IN CELLS AND MATRIX. J Ultrastruct Res. 1964 Aug;11:166–172. doi: 10.1016/s0022-5320(64)80100-3. [DOI] [PubMed] [Google Scholar]
- GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAGUNOFF D., PHILLIPS M. T., ISERI O. A., BENDITT E. P. ISOLATION AND PRELIMINARY CHARACTERIZATION OF RAT MAST CELL GRANULES. Lab Invest. 1964 Nov;13:1331–1344. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singleton E. M., Clark S. L., Jr The response of mast cells to compound 48/80 studied with the electron microscope. Lab Invest. 1965 Oct;14(10):1744–1763. [PubMed] [Google Scholar]
