Abstract
Years ago (16, 18, 19), in a study of shadowed preparations of Proteus vulgaris that had been autolyzed in the cold, the observation was made that the flagella arose from basal bodies. However, recently (3, 7, 24, 33) doubt has been cast on the conclusion that the flagella of bacteria emerge from sizable basal bodies. This problem has, therefore, been reinvestigated with actively developing cultures of Proteus mirabilis, the cell walls of which had been expanded slightly by exposure to penicillin. Two techniques were applied: ultramicrotomy, and negative staining of whole mount preparations. This paper deals with the thin sections of bacteria after the usual fixation technique had been altered slightly: the cells were embedded in agar prior to their fixation and further processing. The flagella then remained attached to the cells and were seen to extend between the cell wall and the plasma membrane. Occasionally, the flagella appeared to be anchored in the cell by means of a hook-shaped ending. In sections of cells rich in cytoplasm, the basal bodies are particularly difficult to visualize due to their small size (25 to 45 mµ) and the lack of properties that would enable one to distinguish them from the ribonucleoprotein structures; in addition, their boundary appears to be delicate. However, when the cytoplasm is sparse in the cells, either naturally or as a result of osmotic shocking in distilled water, the flagella can be observed to emerge from rounded structures approximately 25 to 45 mµ wide. Contrary to a previous suggestion (21), the flagella do not terminate in the peripheral sites of reduced tellurite, i.e. the chondrioids. The observations in this part of the study agree with those described in the following paper (15) dealing with negatively stained preparations.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abram D., Koffler H., Vatter A. E. Basal structure and attachment of flagella in cells of Proteus vulgaris. J Bacteriol. 1965 Nov;90(5):1337–1354. doi: 10.1128/jb.90.5.1337-1354.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERNHARD W., DE HARVEN E. Etude au microscope électronique de l'ultrastructure du centriole chez les vertébrés. Z Zellforsch Mikrosk Anat. 1956;45(3):378–398. [PubMed] [Google Scholar]
- GLAUERT A. M., KERRIDGE D., HORNE R. W. THE FINE STRUCTURE AND MODE OF ATTACHMENT OF THE SHEATHED FLAGELLUM OF VIBRIO METCHNIKOVII. J Cell Biol. 1963 Aug;18:327–336. doi: 10.1083/jcb.18.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRACE J. B. Some observations on the flagella and blepharoplasts of Spirillum and Vibrio spp. J Gen Microbiol. 1954 Apr;10(2):325–327. doi: 10.1099/00221287-10-2-325. [DOI] [PubMed] [Google Scholar]
- GRIMSTONE A. V. Fine structure and morphogenesis in Protozoa. Biol Rev Camb Philos Soc. 1961 Feb;36:97–150. doi: 10.1111/j.1469-185x.1961.tb01434.x. [DOI] [PubMed] [Google Scholar]
- Hoeniger J. F., Van Iterson W., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. II. Electron microscopy of negatively stained material. J Cell Biol. 1966 Dec;31(3):603–618. doi: 10.1083/jcb.31.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
- LOWY J., HANSON J. ELECTRON MICROSCOPE STUDIES OF BACTERIAL FLAGELLA. J Mol Biol. 1965 Feb;11:293–313. doi: 10.1016/s0022-2836(65)80059-6. [DOI] [PubMed] [Google Scholar]
- LOWY J., HANSON J. STRUCTURE OF BACTERIAL FLAGELLA. Nature. 1964 May 9;202:538–540. doi: 10.1038/202538a0. [DOI] [PubMed] [Google Scholar]
- Lowy J. Structure of the proximal ends of bacterial flagella. J Mol Biol. 1965 Nov;14(1):297–299. doi: 10.1016/s0022-2836(65)80251-0. [DOI] [PubMed] [Google Scholar]
- PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEASE P. Some observations upon the development and mode of attachment of the flagella in Vibrio and Spirillum species. Exp Cell Res. 1956 Feb;10(1):234–237. doi: 10.1016/0014-4827(56)90092-1. [DOI] [PubMed] [Google Scholar]
- PIJPER A. Bacterial flagella and motility. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1957;30:37–95. doi: 10.1007/978-3-662-25832-3_2. [DOI] [PubMed] [Google Scholar]
- RANDALL J. T., JACKSON S. F. Fine structure and function in Stentor polymorphous. J Biophys Biochem Cytol. 1958 Nov 25;4(6):807–830. doi: 10.1083/jcb.4.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall J., Disbrey C. Evidence for the presence of DNA at basal body sites in Tetrahymena pyriformis. Proc R Soc Lond B Biol Sci. 1965 Jul 27;162(989):473–491. doi: 10.1098/rspb.1965.0051. [DOI] [PubMed] [Google Scholar]
- TAWARA J. Electron-microscopic study on the flagella of Vibrio comma. J Bacteriol. 1957 Jan;73(1):89–90. doi: 10.1128/jb.73.1.89-90.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THORNLEY M. J., HORNE R. W. Electron microscope observations on the structure of fimbriae, with particular reference to Klebsiella strains, by the use of the negative staining technique. J Gen Microbiol. 1962 Apr;28:51–56. doi: 10.1099/00221287-28-1-51. [DOI] [PubMed] [Google Scholar]
- VAN ITERSON, LEENE W. A CYTOCHEMICAL LOCALIZATION OF REDUCTIVE SITES IN A GRAM-NEGATIVE BACTERIUM. TELLURITE REDUCTION IN PROTEUS VULGARIS. J Cell Biol. 1964 Mar;20:377–387. doi: 10.1083/jcb.20.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIBULL C. The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J Bacteriol. 1953 Dec;66(6):688–695. doi: 10.1128/jb.66.6.688-695.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS M. A., CHAPMAN G. B. Electron microscopy of flagellation in species of Spirillum. J Bacteriol. 1961 Feb;81:195–203. doi: 10.1128/jb.81.2.195-203.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Iterson W., Hoeniger J. F., Nijman van Zanten E. A "microtubule" in a bacterium. J Cell Biol. 1967 Jan;32(1):1–10. doi: 10.1083/jcb.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Iterson W. The fine structure of the ribonucleoprotein in bacterial cytoplasm. J Cell Biol. 1966 Mar;28(3):563–570. doi: 10.1083/jcb.28.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]