Abstract
A microsomal fraction was isolated from rabbit psoas muscle by a modification of Muscatello's method. The fraction contained a Mg-dependent ATPase which had a pH optimum of 7.5. Activity was further stimulated by addition of Na or K or other monovalent cations to the reaction mixture, but synergistic activation by Na and K, and ouabain inhibition, could not be demonstrated. The enzyme hydrolyzed only ATP (adenosine triphosphate) and ITP (inosine triphosphate) at appreciable rates, but Na or K stimulated activity only when ATP was used as substrate. Activity was inhibited by Ca and by low concentrations of Na deoxycholate, and was sensitive to inhibition by thiol group reagents. The enzyme could be distinguished from another enzyme, also present in the fraction, which was Ca-activated, and which exhibited a wider substrate specificity, different pH activation characteristics, lower specific activity, lack of stimulation by Na or K, and less sensitivity to inhibition by deoxycholate and by thiol group reagents. These findings formed the basis for demonstration of the Mg-dependent ATPase in situ.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASKARI A., FRATANTONI J. C. EFFECT OF MONOVALENT CATIONS ON THE ADENOSINETRIPHOSPHATASE OF SONICATED ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1964 Oct 23;92:132–141. doi: 10.1016/0926-6569(64)90277-9. [DOI] [PubMed] [Google Scholar]
- AUDITORE J. V., MURRAY L. THE LOCALIZATION OF THE MG + NA + K ACTIVATED G-STROPHANTHIN SENSITIVE ATPASE IN CARDIAC MUSCLE. Arch Int Pharmacodyn Ther. 1963 Sep 1;145:137–146. [PubMed] [Google Scholar]
- BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
- CARSTEN M. E., MOMMAERTS W. F. THE ACCUMULATION OF CALCIUM IONS BY SARCOTUBULAR VESICLES. J Gen Physiol. 1964 Nov;48:183–197. doi: 10.1085/jgp.48.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHARNOCK J. S., POST R. L. STUDIES OF THE MECHANISM OF CATION TRANSPORT. I. THE PREPARATION AND PROPERTIES OF A CATION-STIMULATED ADENOSINE-TRIPHOSPHATASE FROM GUINEA PIG KIDNEY CORTEX. Aust J Exp Biol Med Sci. 1963 Oct;41:547–560. [PubMed] [Google Scholar]
- DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDWARDS C., HARRIS E. J. Factors influencing the sodium movement in frog muscle with a discussion of the mechanism of sodium movement. J Physiol. 1957 Mar 11;135(3):567–580. doi: 10.1113/jphysiol.1957.sp005731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRATANTONI J. C., ASKARI A. EFFECT OF MONOVALENT CATIONS ON THE ADENOSINETRIPHOSPHATASE OF A SKELETAL MUSCLE MICROSOMAL PREPARATION. Biochim Biophys Acta. 1965 May 18;99:259–269. doi: 10.1016/s0926-6593(65)80122-9. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOURLEY D. R. POTASSIUM EXCHANGE IN FROG SARTORIUS MUSCLE. Am J Physiol. 1964 Jun;206:1340–1346. doi: 10.1152/ajplegacy.1964.206.6.1340. [DOI] [PubMed] [Google Scholar]
- Green A. L., Taylor C. B. Kinetics of (Na+ + K+)-stimulated ATPase of rabbit kidney microsomes. Biochem Biophys Res Commun. 1964;14:118–123. doi: 10.1016/0006-291x(64)90240-2. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOROWICZ P., GERBER C. J. EFFECTS OF EXTERNAL POTASSIUM AND STROPHANTHIDIN ON SODIUM FLUXES IN FROG STRIATED MUSCLE. J Gen Physiol. 1965 Jan;48:489–514. doi: 10.1085/jgp.48.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY A. F. Local activation of muscle. Ann N Y Acad Sci. 1959 Aug 28;81:446–452. doi: 10.1111/j.1749-6632.1959.tb49326.x. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
- JOHNSON J. A. Influence of ouabain, strophanthidin and dihydrostrophanthidin on sodium and potassium transport in frog sartorii. Am J Physiol. 1956 Nov;187(2):328–332. doi: 10.1152/ajplegacy.1956.187.2.328. [DOI] [PubMed] [Google Scholar]
- KERNAN R. P. The role of lactate in the active excretion of sodium by frog muscle. J Physiol. 1962 Jun;162:129–137. doi: 10.1113/jphysiol.1962.sp006919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwang Soo Lee Effect of electrical stimulation on uptake and release of calcium by the endoplasmic reticulum. Nature. 1965 Jul 3;207(992):85–86. doi: 10.1038/207085a0. [DOI] [PubMed] [Google Scholar]
- LANDON E. J., NORRIS J. L. Sodium- and potassium-dependent adenosine triphosphatase activity in a rat-kidney endoplasmic reticulum fraction. Biochim Biophys Acta. 1963 May 14;71:266–276. doi: 10.1016/0006-3002(63)91081-3. [DOI] [PubMed] [Google Scholar]
- LEE K. S., YU D. H. A STUDY OF THE SODIUM- AND POTASSIUM-ACTIVATED ADENOSINETRIPHOSPHATASE ACTIVITY OF HEART MICROSOMAL FRACTION. Biochem Pharmacol. 1963 Nov;12:1253–1264. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
- MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. II. CORRELATION BETWEEN ADENOSINE TRIPHOSPHATASE ACTIVITY AND CA++ UPTAKE. J Biol Chem. 1964 Feb;239:659–668. [PubMed] [Google Scholar]
- MUSCATELLO U., ANDERSSON-CEDERGREN E., AZZONE G. F., von der DECKEN The sarcotubular system of frog skeletal muscle. A morphological and biochemical study. J Biophys Biochem Cytol. 1961 Aug;10(4):201–218. doi: 10.1083/jcb.10.4.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUSCATELLO U., ANDERSSON-CEDERGREN E. Function of sarcotubular system in relation to biosynthesis of muscle proteins. Rev Can Biol. 1962 Sep-Dec;21:207–218. [PubMed] [Google Scholar]
- OHNISHI T. LE CHANGEMENT DE VOLUME DU CHLOROPLASTE, ACCOMPAGN'E DE PHOTOPHOSPHORYLATION, ET LES PROT'EINES RESSEMBLANTES 'A L'ACTINE ET 'A LA MYOSINE EXTRAITES DU CHLOROPLASTE. J Biochem. 1964 May;55:494–503. [PubMed] [Google Scholar]
- PARRISH J. E., KIPNIS D. M. EFFECT OF NA ON SUGAR AND AMINO ACID TRANSPORT IN STRIATED MUSCLE. J Clin Invest. 1964 Oct;43:1994–2002. doi: 10.1172/JCI105073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
- Parsons D. F. Mitochondrial Structure: Two Types of Subunits on Negatively Stained Mitochondrial Membranes. Science. 1963 May 31;140(3570):985–987. doi: 10.1126/science.140.3570.985. [DOI] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAMPSON S. R., KARLER R. CALCIUM-BINDING PROPERTIES OF SKELETAL MUSCLE MICROSOMES. J Cell Physiol. 1963 Dec;62:303–309. doi: 10.1002/jcp.1030620310. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
- STOECKENIUS W. Some observations on negatively stained mitochondria. J Cell Biol. 1963 May;17:443–454. doi: 10.1083/jcb.17.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach H. B. On the Sodium and Potassium Balance of Isolated Frog Muscles. Proc Natl Acad Sci U S A. 1952 May;38(5):451–455. doi: 10.1073/pnas.38.5.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tice L. W., Engel A. G. Cytochemistry of phosphatases of the sarcoplasmic reticulum. II. In situ localization of the Mg-dependent enzyme. J Cell Biol. 1966 Dec;31(3):489–499. doi: 10.1083/jcb.31.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. THE REGULATION OF MYOFIBRILLAR ACTIVITY BY CALCIUM. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:489–501. doi: 10.1098/rspb.1964.0063. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]