Abstract
The fine structure of cleavage, blastula, and gastrula stages of Fundulus heteroclitus was investigated. Cleavage blastomeres are relatively unspecialized, containing few or poorly developed organelles. Beginning in blastula stages, signs of differentiation were noted, including development of the endoplasmic reticulum and Golgi apparatus and appearance of a primary nucleolus and polyribosomes. More extensive structural specializations occur in gastrula stages, including further development of the endoplasmic reticulum and appearance of a granular component in the nucleolus. These changes are associated with cell differentiation and an increased capacity for protein synthesis, and may be preparatory to subsequent histogenesis. The periblast is a continuous syncytial cytoplasmic layer located between the blastodisc and yolk and is formed during late cleavage by incomplete division of the cytoplasm of the blastodisc. Cytoplasmic projections extend from the periblast (and from the basal region of cleavage blastomeres prior to formation of the periblast) into the yolk and function in uptake of yolk material in the absence of pinocytosis. Yolk material appears to be digested by the periblast and transferred into the segmentation cavity where it is available to the blastomeres. Protein granules, lipid droplets, glycogen, crystalline arrays, and multivesicular bodies are related to food storage and utilization by blastomeres. The yolk gel layer enclosing the yolk sphere was found to be a thin layer of cytoplasm continuous with the margin of the periblast and is renamed the yolk cytoplasmic layer.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
- BROWN D. D. RNA SYNTHESIS DURING AMPHIBIAN DEVELOPMENT. J Exp Zool. 1964 Oct;157:101–117. doi: 10.1002/jez.1401570115. [DOI] [PubMed] [Google Scholar]
- Droller M. J., Roth T. F. An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus guppyi. J Cell Biol. 1966 Feb;28(2):209–232. doi: 10.1083/jcb.28.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W., SELBY C. C. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958 Jan 25;4(1):63–72. doi: 10.1083/jcb.4.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FELDMAN D. G. A method of staining thin sections with lead hydroxide for precipitate-free sections. J Cell Biol. 1962 Dec;15:592–595. doi: 10.1083/jcb.15.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREEMAN J. A., SPURLOCK B. O. A new epoxy embedment for electron microscopy. J Cell Biol. 1962 Jun;13:437–443. doi: 10.1083/jcb.13.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOPE J., HUMPHRIES A. A., Jr, BOURNE G. H. ULTRASTRUCTURAL STUDIES ON DEVELOPING OOCYTES ON THE SALAMANDER TRITURUS VIRIDESCENS. II. THE FORMATION OF YOLK. J Ultrastruct Res. 1964 Jun;10:547–556. doi: 10.1016/s0022-5320(64)80028-9. [DOI] [PubMed] [Google Scholar]
- JACOB J., SIRLIN J. L. Electron microscope studies on salivary gland cells. I. The nucleus of Bradysia mycorum Frey (Sciaridae), with special reference to the nucleolus. J Cell Biol. 1963 Apr;17:153–165. doi: 10.1083/jcb.17.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARASAKI S. AN ELECTRON MICROSCOPIC STUDY OF WOLFFIAN LENS REGENERATION IN THE ADULT NEWT. J Ultrastruct Res. 1964 Oct;11:246–273. doi: 10.1016/s0022-5320(64)90031-0. [DOI] [PubMed] [Google Scholar]
- KARASAKI S. STUDIES ON AMPHIBIAN YOLK. 5. ELECTRON MICROSCOPIC OBSERVATIONS ON THE UTILIZATION OF YOLK PLATELETS DURING EMBRYOGENESIS. J Ultrastruct Res. 1963 Oct;59:225–247. doi: 10.1016/s0022-5320(63)80004-0. [DOI] [PubMed] [Google Scholar]
- KARASAKI S. Studies on amphibian yolk 1. The ultrastructure of the yolk platelet. J Cell Biol. 1963 Jul;18:135–151. doi: 10.1083/jcb.18.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANZAVECCHIA G. STRUCTURE AND DEMOLITION OF YOLK IN RANA ESCULENTA L. J Ultrastruct Res. 1965 Feb;12:147–159. doi: 10.1016/s0022-5320(65)80013-2. [DOI] [PubMed] [Google Scholar]
- MARKS P. A., RIFKIND R. A. DANON D: POLYRIBOSOMES AND PROTEIN SYNTHESIS DURING RETICULOCYTE MATURATION IN VITRO. Proc Natl Acad Sci U S A. 1963 Aug;50:336–342. doi: 10.1073/pnas.50.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PANIJEL J. L'organisation du vitellus dans les oeufs d'amphibiens. Biochim Biophys Acta. 1950 Jun;5(3/4):343–357. doi: 10.1016/0006-3002(50)90181-8. [DOI] [PubMed] [Google Scholar]
- REVEL J. P., NAPOLITANO L., FAWCETT D. W. Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol. 1960 Dec;8:575–589. doi: 10.1083/jcb.8.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOTELO J. R., PORTER K. R. An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 1959 Mar 25;5(2):327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRINKAUS J. P. The cellular basis of Fundulus epiboly. Adhesivity of blastula and gastrula cells in culture. Dev Biol. 1963 Mar;6:513–532. doi: 10.1016/0012-1606(63)90139-8. [DOI] [PubMed] [Google Scholar]
- Trinkaus J. P., Lentz T. L. Surface specializations of Fundulus cells and their relation to cell movements during gastrulation. J Cell Biol. 1967 Jan;32(1):139–153. doi: 10.1083/jcb.32.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trinkaus J. P. The Surface Gel Layer of Fundulus Eggs in Relation to Epiboly. Proc Natl Acad Sci U S A. 1949 Apr;35(4):218–225. doi: 10.1073/pnas.35.4.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trotter N. L. Electron-opaque, lipid-containing bodies in mouse liver at early intervals after partial hepatectomy and sham operation. J Cell Biol. 1965 Jun;25(3 Suppl):41–52. doi: 10.1083/jcb.25.3.41. [DOI] [PubMed] [Google Scholar]
- WARD R. T. The origin of protein and fatty yolk in Rana pipiens. II. Electron microscopical and cytochemical observations of young and mature oocytes. J Cell Biol. 1962 Aug;14:309–341. doi: 10.1083/jcb.14.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WORLEY L. G., MORIBER L. G. The origin of protein yolk from the Golgi apparatus in gastropods. Trans N Y Acad Sci. 1961 Feb;23:352–356. doi: 10.1111/j.2164-0947.1961.tb01362.x. [DOI] [PubMed] [Google Scholar]