Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Oct 1;35(1):193–212. doi: 10.1083/jcb.35.1.193

THE FORMATION OF THE PRIMARY ENVELOPE DURING OOCYTE DIFFERENTIATION IN TELEOSTS

Everett Anderson 1
PMCID: PMC2107101  PMID: 4863048

Abstract

The differentiation of the primary envelope of oocytes of the seahorse (Hippocampus erectus) and the pipefish (Syngnathus fuscus) has been investigated by techniques of light- and electron microscopy. The developing oocytes have been divided into four stages according to size. Oogonia are designated as stage I; stages II and III are oocytes; stage IV represents mature eggs. The primary envelope which is produced by the oocyte is initially a tripartite structure; for convenience of description, the portions are referred to as zones 1, 2, and 3, respectively. Zone 1 first appears as a homogeneous substance at approximately the middle of the long axis of each microvillus. Zone 2 is immediately beneath zone 1 and consists of an extremely electron-opaque granular component. Zone 3 is subjacent to zone 2; it is the largest and most complex of the three. Zone 3 consists of an amorphous material organized in a reticular-like network. Staining procedures indicate that the envelope is composed of a glycoprotein. Just before the oocyte matures there is a structural alteration in zones 2 and 3. Zone 2 becomes a compact, dense layer and zone 3 becomes multilaminate. Subsequent to these changes, zone 1 degenerates. The classification of egg envelopes is discussed, and comparisons are made between the primary envelope of the teleosts investigated and the primary envelopes of other species.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E., BEAMS H. W. Cytological observations on the fine structure of the guinea pig ovary with special reference to the oogonium, primary oocyte and associated follicle cells. J Ultrastruct Res. 1960 Jun;3:432–446. doi: 10.1016/s0022-5320(60)90021-6. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON E. OOCYTE DIFFERENTIATION AND VITELLOGENESIS IN THE ROACH PERIPLANETA AMERICANA. J Cell Biol. 1964 Jan;20:131–155. doi: 10.1083/jcb.20.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashley C. A., Feder N. Glycol methacrylate in histopathology. A study of central necrosis of the liver using a water-miscible plastic as embedding medium. Arch Pathol. 1966 May;81(5):391–397. [PubMed] [Google Scholar]
  4. Bruni C., Porter K. R. The Fine Structure of the Parenchymal Cell of the Normal Rat Liver: I. General Observations. Am J Pathol. 1965 May;46(5):691–755. [PMC free article] [PubMed] [Google Scholar]
  5. CARO L. G. Electron microscopic radioautography of thin sections: the Golgi zone as a site of protein concentration in pancreatic acinar cells. J Biophys Biochem Cytol. 1961 May;10:37–45. doi: 10.1083/jcb.10.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHAUDHRY H. S. The origin and structure of the zona pellucida in the ovarian eggs of teleosts. Z Zellforsch Mikrosk Anat. 1956;43(5):478–485. doi: 10.1007/BF00343084. [DOI] [PubMed] [Google Scholar]
  8. CHIQUOINE A. D. The development of the zona pellucida of the mammalian ovum. Am J Anat. 1960 Mar;106:149–169. doi: 10.1002/aja.1001060207. [DOI] [PubMed] [Google Scholar]
  9. Droller M. J., Roth T. F. An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus guppyi. J Cell Biol. 1966 Feb;28(2):209–232. doi: 10.1083/jcb.28.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FAIRBAIRN D. The biochemistry of Ascaris. Exp Parasitol. 1957 Sep;6(5):491–554. doi: 10.1016/0014-4894(57)90037-1. [DOI] [PubMed] [Google Scholar]
  11. ITO S., WINCHESTER R. J. The fine structure of the gastric mucosa in the bat. J Cell Biol. 1963 Mar;16:541–577. doi: 10.1083/jcb.16.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JOLLIE W. P., JOLLIE L. G. THE FINE STRUCTURE OF THE OVARIAN FOLLICLE OF THE OVOVIVIPAROUS POECILIID FISH, LEBISTES RETICULATUS. I. MATURATION OF FOLLICULAR EPITHELIUM. J Morphol. 1964 May;114:479–501. doi: 10.1002/jmor.1051140308. [DOI] [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neutra M., Leblond C. P. Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol. 1966 Jul;30(1):137–150. doi: 10.1083/jcb.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PEACHEY L. D. ELECTRON MICROSCOPIC OBSERVATIONS ON THE ACCUMULATION OF DIVALENT CATIONS IN INTRAMITOCHONDRIAL GRANULES. J Cell Biol. 1964 Jan;20:95–111. doi: 10.1083/jcb.20.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PETERSON M., LEBLOND C. P. SYNTHESIS OF COMPLEX CARBOHYDRATES IN THE GOLGI REGION, AS SHOWN BY RADIOAUTOGRAPHY AFTER INJECTION OF LABELED GLUCOSE. J Cell Biol. 1964 Apr;21:143–148. doi: 10.1083/jcb.21.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PORTER K. R. CELL FINE STRUCTURE AND BIOSYNTHESIS OF INTERCELLULAR MACROMOLECULES. Biophys J. 1964 Jan;4:SUPPL167–SUPPL201. doi: 10.1016/s0006-3495(64)86936-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REBHUN L. I. Electron microscope studies on the vitelline membrane of the surf clam, Spisula solidissima. J Ultrastruct Res. 1962 Feb;6:107–122. doi: 10.1016/s0022-5320(62)90064-3. [DOI] [PubMed] [Google Scholar]
  20. REVEL J. P., HAY E. D. AN AUTORADIOGRAPHIC AND ELECTRON MICROSCOPIC STUDY OF COLLAGEN SYNTHESIS IN DIFFERENTIATING CARTILAGE. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:110–144. doi: 10.1007/BF00341524. [DOI] [PubMed] [Google Scholar]
  21. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  22. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schantz A., Schecter A. Iron-hematoxylin and safranin O as a polychrome stain for epon sections. Stain Technol. 1965 Sep;40(5):279–282. doi: 10.3109/10520296509116427. [DOI] [PubMed] [Google Scholar]
  24. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WARTENBERG H., STEGNER H. E. [On the electron microscopic fine structure of the human ovarian egg]. Z Zellforsch Mikrosk Anat. 1960;52:450–474. [PubMed] [Google Scholar]
  26. WARTENBERG H. [Electron microscopic and histochemical studies on the oogenesis of amphibia egg cells]. Z Zellforsch Mikrosk Anat. 1962;58:427–486. [PubMed] [Google Scholar]
  27. Wyburn G. M., Aitken R. N., Johnston H. S. The ultrastructure of the zona radiata of the ovarian follicle of the domestic fowl. J Anat. 1965 Jul;99(Pt 3):469–484. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES