Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Oct 1;35(1):81–101. doi: 10.1083/jcb.35.1.81

ELECTRON MICROSCOPIC STUDIES OF INDUCED CARTILAGE DEVELOPMENT AND CALCIFICATION

H Clarke Anderson 1
PMCID: PMC2107116  PMID: 6061727

Abstract

Cultured, human, amniotic cells (FL strain) injected into the thigh muscles of cortisone-conditioned mice proliferated to form discrete colonies which, over a period of 5 days, became invested by numerous fibroblasts. Cartilage cells and matrix appeared within the fibroblastic zones during the succeeding 2–4 days. Cartilage matrix calcified within 12 days following FL-cell injection. Cartilage cells closely resembled fibroblasts from which they appeared to be derived, and were readily distinguished from FL cells by their prominent ergastoplasm and Golgi complexes. Cartilage matrix was composed of a distinctive feltwork of randomly arranged, collagen fibrils (∼600 A axial period and ∼250 A width) from which small electron-opaque, leaflike matrix particles extended. Matrix calcification occurred with the deposition of radially arranged needle-like structures resembling hydroxyapatite. Dense centers were often identified within these clusters. Examination of heavily calcified areas revealed confluent masses of apatite-like material. In general, the fine structure of induced cartilage formation and calcification resembled that of cartilage development and calcification as previously described in the normal epiphysis.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON D. R. THE ULTRASTRUCTURE OF ELASTIC AND HYALINE CARTILAGE OF THE RAT. Am J Anat. 1964 May;114:403–434. doi: 10.1002/aja.1001140305. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON H. C., MERKER P. C., FOCH J. FORMATION OF TUMORS CONTAINING BONE AFTER INTRAMUSCULAR INJECTION OF TRANSFORMED HUMAN AMNION CELLS (FL) INTO CORTISONE-TREATED MICE. Am J Pathol. 1964 Mar;44:507–519. [PMC free article] [PubMed] [Google Scholar]
  3. Anderson H. C., Coulter P. R. Bone formation induced in mouse thigh by cultured human cells. J Cell Biol. 1967 Apr;33(1):165–177. doi: 10.1083/jcb.33.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMERON D. A., ROBINSON R. A. Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):253–260. doi: 10.1083/jcb.2.4.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CAMERON D. A. The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understading of osteogenesis. Clin Orthop Relat Res. 1963;26:199–228. [PubMed] [Google Scholar]
  6. CASTOR C. W., MUIRDEN K. D. COLLAGEN FORMATION IN MONOLAYER CULTURES OF HUMAN FIBROBLASTS. THE EFFECTS OF HYDROCORTISONE. Lab Invest. 1964 Jun;13:560–574. [PubMed] [Google Scholar]
  7. CHAPMAN J. A. Morphological and chemical studies of collagen formation. I. The fine structure of guinea pig granulomata. J Biophys Biochem Cytol. 1961 Mar;9:639–651. doi: 10.1083/jcb.9.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIES D. V., BARNETT C. H., COCHRANE W., PALFREY A. J. Electron microscopy of articular cartilage in the young adult rabbit. Ann Rheum Dis. 1962 Mar;21:11–22. doi: 10.1136/ard.21.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ENGSTROM A., FERNANDEZ-MORAN H. Ultrastructural organization of bone. Nature. 1956 Sep 1;178(4531):494–495. doi: 10.1038/178494b0. [DOI] [PubMed] [Google Scholar]
  10. FERNANDO N. V., MOVAT H. Z. Fibrillogenesis in regenerating tendon. Lab Invest. 1963 Feb;12:214–229. [PubMed] [Google Scholar]
  11. FOGH J., EDWARDS G. A. Ultrastructure of primary culture amnion cells and transformed FL cells in continuous culture. J Natl Cancer Inst. 1959 Nov;23:893–923. [PubMed] [Google Scholar]
  12. FOGH J., LUND R. O. Continuous cultivation of epithelial cell strain (FL) from human amniotic membrane. Proc Soc Exp Biol Med. 1957 Mar;94(3):532–537. doi: 10.3181/00379727-94-23003. [DOI] [PubMed] [Google Scholar]
  13. FOLLIS R. H., Jr, BERTHRONG M. Histochemical studies on cartilage and bone; the normal pattern. Bull Johns Hopkins Hosp. 1949 Oct;85(4):281–297. [PubMed] [Google Scholar]
  14. GHADIALLY F. N., MEACHIM G., COLLINS D. H. EXTRA-CELLULAR LIPID IN THE MATRIX OF HUMAN ARTICULAR CARTILAGE. Ann Rheum Dis. 1965 Mar;24:136–146. doi: 10.1136/ard.24.2.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GODMAN G. C., PORTER K. R. Chondrogenesis, studied with the electron microscope. J Biophys Biochem Cytol. 1960 Dec;8:719–760. doi: 10.1083/jcb.8.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GOLDBERG B., GREEN H. AN ANALYSIS OF COLLAGEN SECRETION BY ESTABLISHED MOUSE FIBROBLAST LINES. J Cell Biol. 1964 Jul;22:227–258. doi: 10.1083/jcb.22.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAY E. D. The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae. J Biophys Biochem Cytol. 1958 Sep 25;4(5):583–591. doi: 10.1083/jcb.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haust M. D. Fine fibrils of extracellular space (microfibrils). Their structure and role in connective tissue organization. Am J Pathol. 1965 Dec;47(6):1113–1137. [PMC free article] [PubMed] [Google Scholar]
  20. Haust M. D., More R. H., Bencosme S. A., Balis J. U. Elastogenesis in human aorta: an electron microscopic study. Exp Mol Pathol. 1965 Oct;4(5):508–524. doi: 10.1016/0014-4800(65)90015-8. [DOI] [PubMed] [Google Scholar]
  21. JOHANSEN E., PARKS H. F. Electron microscopic observations on the three-dimensional morphology of apatite crystallites of human dentine and bone. J Biophys Biochem Cytol. 1960 Jul;7:743–746. doi: 10.1083/jcb.7.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KARRER H. E. Electron microscope study of developing chick embryo aorta. J Ultrastruct Res. 1960 Dec;4:420–454. doi: 10.1016/s0022-5320(60)80032-9. [DOI] [PubMed] [Google Scholar]
  23. LOW F. N. Microfibrils: fine filamentous components of the tissue space. Anat Rec. 1962 Feb;142:131–137. doi: 10.1002/ar.1091420205. [DOI] [PubMed] [Google Scholar]
  24. LOWTHER D. A., GREEN N. M., CHAPMAN J. A. Morphological and chemical studies of collagen formation. II. Metabolic activity of collagen associated with subcellular fractions of guinea pig granulomata. J Biophys Biochem Cytol. 1961 Jul;10:373–388. doi: 10.1083/jcb.10.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MEYER K., HOFFMAN P., LINKER A. Mucopolysaccharides of costal cartilage. Science. 1958 Oct 17;128(3329):896–896. doi: 10.1126/science.128.3329.896. [DOI] [PubMed] [Google Scholar]
  26. MILLONIG G. A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol. 1961 Dec;11:736–739. doi: 10.1083/jcb.11.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MONTAGNA W. Glycogen and lipids in human cartilage, with some cytochemical observations on the cartilage of the dog, cat, and rabbit. Anat Rec. 1949 Jan;103(1):77–92. doi: 10.1002/ar.1091030106. [DOI] [PubMed] [Google Scholar]
  28. Matukas V. J., Panner B. J., Orbison J. L. Studies on ultrastructural identification and distribution of protein-polysaccharide in cartilage matrix. J Cell Biol. 1967 Feb;32(2):365–377. doi: 10.1083/jcb.32.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. PEACH R., WILLIAMS G., CHAPMAN J. A. Alight and electron optical study of regenerating tendon. Am J Pathol. 1961 Apr;38:495–513. [PMC free article] [PubMed] [Google Scholar]
  31. REVEL J. P., HAY E. D. AN AUTORADIOGRAPHIC AND ELECTRON MICROSCOPIC STUDY OF COLLAGEN SYNTHESIS IN DIFFERENTIATING CARTILAGE. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:110–144. doi: 10.1007/BF00341524. [DOI] [PubMed] [Google Scholar]
  32. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. ROBINSON R. A. An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg Am. 1952 Apr;34-A(2):389–passim. [PubMed] [Google Scholar]
  34. ROBINSON R. A., CAMERON D. A. The organic matrix of bone and epiphyseal cartilage. Clin Orthop. 1957;9:16–29. [PubMed] [Google Scholar]
  35. ROSS R., BENDITT E. P. Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J Biophys Biochem Cytol. 1961 Dec;11:677–700. doi: 10.1083/jcb.11.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ross R., Benditt E. P. Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline-H3 utilization by fibroblasts. J Cell Biol. 1965 Oct;27(1):83–106. doi: 10.1083/jcb.27.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SCOTT B. L., PEASE D. C. Electron microscopy of the epiphyseal apparatus. Anat Rec. 1956 Dec;126(4):465–495. doi: 10.1002/ar.1091260405. [DOI] [PubMed] [Google Scholar]
  39. SHATTON J., SCHUBERT M. Isolation of a mucoprotein from cartilage. J Biol Chem. 1954 Dec;211(2):565–573. [PubMed] [Google Scholar]
  40. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. SILBERBERG R., HASLER M., SILBERBERG M. SUBMICROSCOPIC RESPONSE OF ARTICULAR CARTILAGE OF MICE TREATED WITH ESTROGENIC HORMONE. Am J Pathol. 1965 Feb;46:289–305. [PMC free article] [PubMed] [Google Scholar]
  42. SILBERBERG R., SILBERBERG M., VOGEL A., WETTSTEIN W. Ultrastructure of articular cartilage of mice of various ages. Am J Anat. 1961 Nov;109:251–275. doi: 10.1002/aja.1001090304. [DOI] [PubMed] [Google Scholar]
  43. SILBERBERG R., SILBEREBERG M., FEIR D. LIFE CYCLE OF ARTICULAR CARTILAGE CELLS: AN ELECTRON MICROSCOPE STUDY OF THE HIP JOINT OF THE MOUSE. Am J Anat. 1964 Jan;114:17–47. doi: 10.1002/aja.1001140103. [DOI] [PubMed] [Google Scholar]
  44. STEMPAK J. G., WARD R. T. AN IMPROVED STAINING METHOD FOR ELECTRON MICROSCOPY. J Cell Biol. 1964 Sep;22:697–701. doi: 10.1083/jcb.22.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. TAKUMA S. Electron microscopy of the developing cartilagenous epiphysis. Arch Oral Biol. 1960 Jul;2:111–119. doi: 10.1016/0003-9969(60)90059-5. [DOI] [PubMed] [Google Scholar]
  46. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol. 1958 Nov 25;4(6):727–730. doi: 10.1083/jcb.4.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. ZELANDER T. Ultrastructure of articular cartilage. Z Zellforsch Mikrosk Anat. 1959;49(6):720–738. doi: 10.1007/BF00342718. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES