Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Oct 1;35(1):153–173. doi: 10.1083/jcb.35.1.153

MICROTUBULES IN THE SPERMATIDS OF THE DOMESTIC FOWL

J Richard McIntosh 1, Keith R Porter 1
PMCID: PMC2107123  PMID: 6061713

Abstract

Spermiogenesis in chicken has been examined in order to see whether the radical changes observed in cell shape can be related to the presence of cytoplasmic microtubules. A highly ordered array of tubules has been found which surrounds the nucleus as it elongates from a sphere to a slender cylinder. The structure of the array has been determined by following the tubules through 12–14 adjacent serial sections, and it is a left-handed double helix. Faint cross-bridges connect consecutive turns of the two helices. After the change in nuclear shape is complete, the helical system of microtubules disappears and is replaced by a set of almost straight tubules which run parallel to the long axis of the nucleus. These tubules remain while the spermatid nucleus condenses isotropically to its final size. We suggest that the helix is the agent which effects nuclear elongation and that the subsequent system of paraxial tubules determines the curvature of the final sperm head. Evidence for these suggestions is found in the form of spermatids which have failed to develop properly. In an appendix we consider the kinematics of single and multiple helix systems and discuss the revelance of these models to the morphogenesis of chicken spermatids.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEHNKE O. A PRELIMINARY REPORT ON "MICROTUBULES" IN UNDIFFERENTIATED AND DIFFERENTIATED VERTEBRATE CELLS. J Ultrastruct Res. 1964 Aug;11:139–146. doi: 10.1016/s0022-5320(64)80098-8. [DOI] [PubMed] [Google Scholar]
  2. BURGOS M. H., FAWCETT D. W. An electron microscope study of spermatid differentiation in the toad, Bufo arenarum Hensel. J Biophys Biochem Cytol. 1956 May 25;2(3):223–240. doi: 10.1083/jcb.2.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GIBBONS I. R. STUDIES ON THE PROTEIN COMPONENTS OF CILIA FROM TETRAHYMENA PYRIFORMIS. Proc Natl Acad Sci U S A. 1963 Nov;50:1002–1010. doi: 10.1073/pnas.50.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KLECZKOWSKI A. PROTEIN OF TOBACCO MOSAIC VIRUS. Biol Rev Camb Philos Soc. 1963 Aug;38:364–384. doi: 10.1111/j.1469-185x.1963.tb00787.x. [DOI] [PubMed] [Google Scholar]
  7. LAUFFER M. A., ANSEVIN A. T., CARTWRIGHT T. E., BRINTON C. C., Jr Polymerization-depolymerization of tobacco mosaic virus protein. Nature. 1958 May 10;181(4619):1338–1339. doi: 10.1038/1811338b0. [DOI] [PubMed] [Google Scholar]
  8. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
  10. Murayama M. Molecular mechanism of red cell "sickling". Science. 1966 Jul 8;153(3732):145–149. doi: 10.1126/science.153.3732.145. [DOI] [PubMed] [Google Scholar]
  11. NAGANO T. Observations on the fine structure of the developing spermatid in the domestic chicken. J Cell Biol. 1962 Aug;14:193–205. doi: 10.1083/jcb.14.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robison W. G., Jr Microtubules in relation to the motility of a sperm syncytium in an armored scale insect. J Cell Biol. 1966 May;29(2):251–265. doi: 10.1083/jcb.29.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES