Abstract
Using a variety of preparative techniques for electron microscopy, we have obtained evidence for the disposition of actin and myosin in vertebrate smooth muscle. All longitudinal myofilaments seen in sections appear to be actin. Previous reports of two types of longitudinal filaments in sections are accounted for by technical factors, and by differentiated areas of opacity along individual filaments. Dense bodies with actin emerging from both ends have been identified in homogenates, and resemble Z discs from skeletal muscle (Huxley, 1963). In sections, short, dark-staining lateral filaments 15–25 A in diameter link adjacent actin filaments within dense bodies and in membrane dense pataches. They appear homologous with Z-disc filaments. Similar lateral filaments connect actin to plasma membrane. Dense bodies and dense patches, therefore, are attachment points and denote units analogous to sarcomeres. In glycerinated, methacrylate-embedded sections, lateral processes different in length and staining characteristics from lateral filaments in dense bodies exist at intervals along actin filaments. These processes are about 30 A wide and resemble heavy meromyosin from skeletal muscle. They also resemble heads of whole molecules of myosin in negatively stained material from gizzard homogenates. Intact single myosin molecules and dimers have been found, both free and attached to actin, even in media of very low ionic strength. Myosin can, therefore, exist in relatively disaggregated form. Models of the contraction mechanism of smooth muscle are proposed. The unique features are: (1) Myosin exists as small functional units. (2) Movement occurs by interdigitation and sliding of actin filaments.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bárány M., Bárány K., Gaetjens E., Bailin G. Chicken gizzard myosin. Arch Biochem Biophys. 1966 Jan;113(1):205–222. doi: 10.1016/0003-9861(66)90175-5. [DOI] [PubMed] [Google Scholar]
- CAESAR R., EDWARDS G. A., RUSKA H. Architecture and nerve supply of mammalian smooth muscle tissue. J Biophys Biochem Cytol. 1957 Nov 25;3(6):867–878. doi: 10.1083/jcb.3.6.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carney J. A., Brown A. L., Jr An electron microscope study of canine cardiac myosin and some of its aggregates. J Cell Biol. 1966 Feb;28(2):375–389. doi: 10.1083/jcb.28.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLIOTT G. F. X-RAY DIFFRACTION STUDIES ON STRIATED AND SMOOTH MUSCLES. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:467–472. doi: 10.1098/rspb.1964.0057. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josephs R., Harrington W. F. Studies on the formation and physical chemical properties of synthetic myosin filaments. Biochemistry. 1966 Nov;5(11):3474–3487. doi: 10.1021/bi00875a013. [DOI] [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaminer B., Bell A. L. Synthetic myosin filaments. Science. 1966 Jan 21;151(3708):323–324. doi: 10.1126/science.151.3708.323. [DOI] [PubMed] [Google Scholar]
- LOWEY S., COHEN C. Studies on the structure of myosin. J Mol Biol. 1962 Apr;4:293–308. doi: 10.1016/s0022-2836(62)80007-2. [DOI] [PubMed] [Google Scholar]
- Lane B. P. Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J Cell Biol. 1965 Oct;27(1):199–213. doi: 10.1083/jcb.27.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEEDHAM D. M., WILLIAMS J. M. SALT-SOLUBLE COLLAGEN IN EXTRACTS OF UTERUS MUSCLE AND IN FOETAL METAMYOSIN. Biochem J. 1963 Dec;89:546–552. doi: 10.1042/bj0890546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE S. FILAMENT LENGTHS IN RESTING AND EXCITED MUSCLES. Proc R Soc Lond B Biol Sci. 1964 Oct 27;160:460–466. doi: 10.1098/rspb.1964.0056. [DOI] [PubMed] [Google Scholar]
- Pepe F. A. Some aspects of the structural organization of the myofibril as revealed by antibody--staining methods. J Cell Biol. 1966 Mar;28(3):505–525. doi: 10.1083/jcb.28.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schirmer R. H. Die Besonderheiten des contractilen Proteins der Arterien. Biochem Z. 1965 Dec 1;343(3):269–282. [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZOBEL C. R., CARLSON F. D. An electron microscopic investigation of myosin and some of its aggregates. J Mol Biol. 1963 Jul;7:78–89. doi: 10.1016/s0022-2836(63)80020-0. [DOI] [PubMed] [Google Scholar]