Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Nov 1;35(2):357–376. doi: 10.1083/jcb.35.2.357

FUNCTIONS OF COATED VESICLES DURING PROTEIN ABSORPTION IN THE RAT VAS DEFERENS

Daniel S Friend 1, Marilyn G Farquhar 1
PMCID: PMC2107144  PMID: 6055991

Abstract

The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT H. S., LUFT J. H. zeta-Collidine as a basis for buffering fixatives. J Biophys Biochem Cytol. 1959 Aug;6(1):113–114. doi: 10.1083/jcb.6.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURGOS M. H. UPTAKE OF COLLOIDAL PARTICLES BY CELLS OF THE CAPUT EPIDIDYMIDIS. Anat Rec. 1964 Mar;148:517–525. doi: 10.1002/ar.1091480310. [DOI] [PubMed] [Google Scholar]
  3. Bruni C., Porter K. R. The Fine Structure of the Parenchymal Cell of the Normal Rat Liver: I. General Observations. Am J Pathol. 1965 May;46(5):691–755. [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham W. P., Morré D. J., Mollenhauer H. H. Structure of isolated plant Golgi apparatus revealed by negative staining. J Cell Biol. 1966 Feb;28(2):169–179. doi: 10.1083/jcb.28.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  6. Droller M. J., Roth T. F. An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus guppyi. J Cell Biol. 1966 Feb;28(2):209–232. doi: 10.1083/jcb.28.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ERICSSON J. L. ABSORPTION AND DECOMPOSITION OF HOMOLOGOUS HEMOGLOBIN IN RENAL PROXIMAL TUBULAR CELLS. Acta Pathol Microbiol Scand Suppl. 1964;168:SUPPL 168–168:1+. [PubMed] [Google Scholar]
  8. ERICSSON J. L. TRANSPORT AND DIGESTION OF HEMOGLOBIN IN THE PROXIMAL TUBULE. II. ELECTRON MICROSCOPY. Lab Invest. 1965 Jan;14:16–39. [PubMed] [Google Scholar]
  9. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FARQUHAR M. G., PALADE G. E. Segregation of ferritin in glomerular protein absorption droplets. J Biophys Biochem Cytol. 1960 Apr;7:297–304. doi: 10.1083/jcb.7.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRAY E. G. The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat. 1961 Jul;95:345–356. [PMC free article] [PubMed] [Google Scholar]
  13. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  14. Holtzman E., Novikoff A. B., Villaverde H. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol. 1967 May;33(2):419–435. doi: 10.1083/jcb.33.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965 Dec;27(3):475–491. doi: 10.1083/jcb.27.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MILLER F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960 Dec;8:689–718. doi: 10.1083/jcb.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MILLER F., PALADE G. E. LYTIC ACTIVITIES IN RENAL PROTEIN ABSORPTION DROPLETS. AN ELECTRON MICROSCOPICAL CYTOCHEMICAL STUDY. J Cell Biol. 1964 Dec;23:519–552. doi: 10.1083/jcb.23.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maunsbach A. B. Absorption of I-125-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Ultrastruct Res. 1966 Jun;15(3):197–241. doi: 10.1016/s0022-5320(66)80108-9. [DOI] [PubMed] [Google Scholar]
  20. Maunsbach A. B. Absorption of ferritin by rat kidney proximal tubule cells. Electron microscopic observations of the initial uptake phase in cells of microperfused single proximal tubules. J Ultrastruct Res. 1966 Sep;16(1):1–12. doi: 10.1016/s0022-5320(66)80019-9. [DOI] [PubMed] [Google Scholar]
  21. NIEMI M. THE FINE STRUCTURE AND HISTOCHEMISTRY OF THE EPITHELIAL CELLS OF THE RAT VAS DEFERENS. Acta Anat (Basel) 1965;60:207–219. doi: 10.1159/000142647. [DOI] [PubMed] [Google Scholar]
  22. NOVIKOFF A. B., GOLDFISCHER S. Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies. Proc Natl Acad Sci U S A. 1961 Jun 15;47:802–810. doi: 10.1073/pnas.47.6.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nicander L. An electron microscopical study of absorbing cells in the posterior caput epididymidis of rabbits. Z Zellforsch Mikrosk Anat. 1965 Jun 16;66(6):829–847. doi: 10.1007/BF00342959. [DOI] [PubMed] [Google Scholar]
  24. ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. STRAUS W. OCCURRENCE OF PHAGOSOMES AND PHAGO-LYSOSOMES IN DIFFERENT SEGMENTS OF THE NEPHRON IN RELATION TO THE REABSORPTION, TRANSPORT, DIGESTION, AND EXTRUSION OF INTRAVENOUSLY INJECTED HORSERADISH PEROXIDASE. J Cell Biol. 1964 Jun;21:295–308. doi: 10.1083/jcb.21.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stay B. Protein uptake in the oocytes of the cecropia moth. J Cell Biol. 1965 Jul;26(1):49–62. doi: 10.1083/jcb.26.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TRUMP B. F., SMUCKLER E. A., BENDITT E. P. A method for staining epoxy sections for light microscopy. J Ultrastruct Res. 1961 Aug;5:343–348. doi: 10.1016/s0022-5320(61)80011-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES