Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Dec 1;35(3):521–552. doi: 10.1083/jcb.35.3.521

BIOGENESIS OF CHLOROPLAST MEMBRANES

I. Plastid Dedifferentiation in a Dark-Grown Algal Mutant (Chlamydomonas reinhardi)

I Ohad 1, P Siekevitz 1, G E Palade 1
PMCID: PMC2107153  PMID: 6064364

Abstract

This paper describes the morphology and photosynthetic activity of a mutant of Chlamydomonas reinhardi (y-1) which is unable to synthesize chlorophyll in the dark. When grown heterotrophically in the light, the mutant is indistinguishable from the wild type Chlamydomonas. When grown in the dark, chlorophyll is diluted through cell division and the photosynthetic activity (oxygen evolution, Hill reaction, and photoreduction of NADP) decays at a rate equal to or faster than that of chlorophyll dilution. However, soluble enzymes associated with the photosynthetic process (alkaline FDPase, NADP-linked G-3-P dehydrogenase, RuDP carboxylase), as well as cytochrome f and ferredoxin, continue to be present in relatively high concentrations. The enzymes involved in the synthesis of the characteristic lipids of the chloroplast (including mono- and digalactoside glycerides, phosphatidyl glycerol, and sulfolipid) are still detectable in dark-grown cells. Such cells accumulate large amounts of starch granules in their plastids. On onset of illumination, dark-grown cells synthesize chlorophyll rapidly, utilizing their starch reserve in the process. At the morphological level, it was observed that during growth in the dark the chloroplast lamellar system is gradually disorganized and drastically decreased in extent, while other subchloroplast components are either unaffected (pyrenoid and its tubular system, matrix) or much less affected (eyespot, ribosomes). It is concluded that the dark-grown mutant possesses a partially differentiated plastid and the enzymic apparatus necessary for the synthesis of the chloroplast membranes (discs). The advantage provided by such a system for the study of the biogenesis of the chloroplast photosynthetic membranes is discussed.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRAWERMAN G. The isolation of a specific species of ribosomes associated with chloroplast development in Euglena gracilis. Biochim Biophys Acta. 1963 Jun 25;72:317–331. [PubMed] [Google Scholar]
  3. BUTLER W. L. Chloroplast development: energy transfer and structure. Arch Biochem Biophys. 1961 Feb;92:287–295. doi: 10.1016/0003-9861(61)90351-4. [DOI] [PubMed] [Google Scholar]
  4. Ben-Shaul Y., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. VII. Fine Structure of the Developing Plastid. Plant Physiol. 1964 Mar;39(2):231–240. doi: 10.1104/pp.39.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benson A. A., Daniel H., Wiser R. A SULFOLIPID IN PLANTS. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1582–1587. doi: 10.1073/pnas.45.11.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CARELL E. F., KAHN J. S. SYNTHESIS OF PORPHYRINS BY ISOLATED CHLOROPLASTS OF EUGLENA. Arch Biochem Biophys. 1964 Oct;108:1–6. doi: 10.1016/0003-9861(64)90347-9. [DOI] [PubMed] [Google Scholar]
  7. CHUN E. H., VAUGHAN M. H., Jr, RICH A. THE ISOLATION AND CHARACTERIZATION OF DNA ASSOCIATED WITH CHLOROPLAST PREPARATIONS. J Mol Biol. 1963 Aug;7:130–141. doi: 10.1016/s0022-2836(63)80042-x. [DOI] [PubMed] [Google Scholar]
  8. CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
  9. EILAM Y., KLEIN S. The effect of light intensity and sucrose feeding on the fine structure in chloroplasts and on the chlorophyll content of etiolated leaves. J Cell Biol. 1962 Aug;14:169–182. doi: 10.1083/jcb.14.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forti G., Bertolè M. L., Zanetti G. Purification and properties of cytochrome f from parsley leaves. Biochim Biophys Acta. 1965 Sep 27;109(1):33–40. doi: 10.1016/0926-6585(65)90087-7. [DOI] [PubMed] [Google Scholar]
  11. HAGEMAN R. H., ARNON D. I. Changes in glyceraldehyde phosphate dehydrogenase during the life cycle of a green plant. Arch Biochem Biophys. 1955 Aug;57(2):421–436. doi: 10.1016/0003-9861(55)90304-0. [DOI] [PubMed] [Google Scholar]
  12. HALLAWAY M. THE LOCALIZATION OF BIOCHEMICAL ACTIVITIES IN THE CELLS OF HIGHER PLANTS. Biol Rev Camb Philos Soc. 1965 May;40:188–230. doi: 10.1111/j.1469-185x.1965.tb00802.x. [DOI] [PubMed] [Google Scholar]
  13. HALL D. O., HUFFAKER R. C., SHANNON L. M., WALLACE A. Influence of light on dark carboxylation reactions in etiolated barley leaves. Biochim Biophys Acta. 1959 Oct;35:540–542. doi: 10.1016/0006-3002(59)90406-8. [DOI] [PubMed] [Google Scholar]
  14. HORROCKS R. H. Paper partition chromatography of reducing sugars with benzidine as a spraying reagent. Nature. 1949 Sep 10;164(4167):444–444. doi: 10.1038/164444a0. [DOI] [PubMed] [Google Scholar]
  15. Hohl H. R., Hepton A. A globular subunit pattern in plastid membranes. J Ultrastruct Res. 1965 Jun;12(5):542–546. doi: 10.1016/s0022-5320(65)80046-6. [DOI] [PubMed] [Google Scholar]
  16. Hudock G. A., Levine R. P. Regulation of Photosynthesis in Chlamydomonas reinhardi. Plant Physiol. 1964 Nov;39(6):889–897. doi: 10.1104/pp.39.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudock G. A., McLeod G. C., Moravkova-Kiely J., Levine R. P. The Relation of Oxygen Evolution to Chlorophyll and Protein Synthesis in a Mutant Strain of Chlamydomonas reinhardi. Plant Physiol. 1964 Nov;39(6):898–903. doi: 10.1104/pp.39.6.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. JACOBSON B. S. Relationships between cell division and death in x-irradiated Chlamydomonas cultures. Radiat Res. 1962 Jul;17:82–91. [PubMed] [Google Scholar]
  19. JACOBSON B. S., SALMON R. J., LANSKY L. L. ANTIMITOTIC EFFECTS OF CHLORAMPHENICOL AND OTHER INHIBITORY AGENTS IN CHLAMYDOMONAS. Exp Cell Res. 1964 Oct;36:1–13. doi: 10.1016/0014-4827(64)90154-5. [DOI] [PubMed] [Google Scholar]
  20. JAMES W. O., LEECH R. M. THE CYTOCHROMES OF ISOLATED CHLOROPLASTS. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:13–24. doi: 10.1098/rspb.1964.0027. [DOI] [PubMed] [Google Scholar]
  21. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  22. LEVINE R. P., SMILLIE R. M. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. I. TRIPHOSPHOPYRIDINE NUCLEOTIDE PHOTOREDUCTION IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4052–4057. [PubMed] [Google Scholar]
  23. LINNANE A. W., VITOLS E., NOWLAND P. G. Studies on the origin of yeast mitochondria. J Cell Biol. 1962 May;13:345–350. doi: 10.1083/jcb.13.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LUCK D. F. FORMATION OF MITOCHONDRIA IN NEUROSPORA CRASSA. A STUDY BASED ON MITOCHONDRIAL DENSITY CHANGES. J Cell Biol. 1965 Mar;24:461–470. doi: 10.1083/jcb.24.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LYTTLETON J. W. Isolation of ribosomes from spinach chloroplasts. Exp Cell Res. 1962 Mar;26:312–317. doi: 10.1016/0014-4827(62)90183-0. [DOI] [PubMed] [Google Scholar]
  28. Lewis S. C., Schiff J. A., Epstein H. T. Studies of chloroplast development in Euglena. 9. Chloroplast antigens and their appearance during chloroplast development. J Protozool. 1965 May;12(2):281–290. doi: 10.1111/j.1550-7408.1965.tb01853.x. [DOI] [PubMed] [Google Scholar]
  29. MARINETTI G. V. CHROMATOGRAPHY OF LIPIDS ON COMMERCIAL SILICA GEL LOADED FILTER PAPER. J Lipid Res. 1965 Apr;6:315–317. [PubMed] [Google Scholar]
  30. MEGO J. L., JAGENDORF A. T. Effect of light on growth of Black Valentine bean plastids. Biochim Biophys Acta. 1961 Oct 28;53:237–254. doi: 10.1016/0006-3002(61)90437-1. [DOI] [PubMed] [Google Scholar]
  31. MILNER H. W., LAWRENCE N. S., FRENCH C. S. Colloidal dispersion of chloroplast material. Science. 1950 Jun 9;111(2893):633–634. doi: 10.1126/science.111.2893.633. [DOI] [PubMed] [Google Scholar]
  32. Margulies M. M. Relationship Between Red Light Mediated Glyceraldehyde-3-Phosphate Dehydrogenase Formation and Light Dependent Development of Photosynthesis. Plant Physiol. 1965 Jan;40(1):57–61. doi: 10.1104/pp.40.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. OGSTON A. G., PHELPS C. F. Exclusion of inulin from solutions of hyaluronic acid. Nature. 1960 Sep 17;187:1024–1024. doi: 10.1038/1871024a0. [DOI] [PubMed] [Google Scholar]
  34. OHAD I., DANON D. ON THE DIMENSIONS OF CELLULOSE MICROFIBRILS. J Cell Biol. 1964 Jul;22:302–305. doi: 10.1083/jcb.22.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):553–584. doi: 10.1083/jcb.35.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. PERINI F., SCHIFF J. A., KAMEN M. D. IRON-CONTAINING PROTEINS IN EUGLENA. II. FUNCTIONAL LOCALIZATION. Biochim Biophys Acta. 1964 Jul 29;88:91–98. doi: 10.1016/0926-6577(64)90156-1. [DOI] [PubMed] [Google Scholar]
  37. RACKER E., SCHROEDER E. A. The reductive pentose phosphate cycle. II. Specific C-1 phosphatases for fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate. Arch Biochem Biophys. 1958 Apr;74(2):326–344. doi: 10.1016/0003-9861(58)90004-3. [DOI] [PubMed] [Google Scholar]
  38. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. RIS H., PLAUT W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol. 1962 Jun;13:383–391. doi: 10.1083/jcb.13.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  41. SAGER R., ISHIDA M. R. CHLOROPLAST DNA IN CHLAMYDOMONAS. Proc Natl Acad Sci U S A. 1963 Oct;50:725–730. doi: 10.1073/pnas.50.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. SAGER R., PALADE G. E. Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J Biophys Biochem Cytol. 1957 May 25;3(3):463–488. doi: 10.1083/jcb.3.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. SAGER R., RAMANIS Z. THE PARTICULATE NATURE OF NONCHROMOSOMAL GENES IN CHLAMYDOMONAS. Proc Natl Acad Sci U S A. 1963 Aug;50:260–268. doi: 10.1073/pnas.50.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. SAGER R., TSUBO Y. Mutagenic effects of streptomycin in Chlamydomonas. Arch Mikrobiol. 1962;42:159–175. doi: 10.1007/BF00408172. [DOI] [PubMed] [Google Scholar]
  45. SAN PIETRO A., LANG H. M. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J Biol Chem. 1958 Mar;231(1):211–229. [PubMed] [Google Scholar]
  46. SMILLIE R. M., LEVINE R. P. THE PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN OF CHLAMYDOMONAS REINHARDI. II. COMPONENTS OF THE TRIPHOSPHOPYRIDINE NUCLEOTIDE-REDUCTIVE PATHWAY IN WILD-TYPE AND MUTANT STRAINS. J Biol Chem. 1963 Dec;238:4058–4062. [PubMed] [Google Scholar]
  47. Sager R. Inheritance in the Green Alga Chlamydomonas Reinhardi. Genetics. 1955 Jul;40(4):476–489. doi: 10.1093/genetics/40.4.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smillie R. M. Photosynthetic & respiratory activities of growing pea leaves. Plant Physiol. 1962 Nov;37(6):716–721. doi: 10.1104/pp.37.6.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sueoka N. MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):83–91. doi: 10.1073/pnas.46.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. WALLACE P. G., LINNANE A. W. OXYGEN-INDUCED SYNTHESIS OF YEAST MITOCHONDRIA. Nature. 1964 Mar 21;201:1191–1194. doi: 10.1038/2011191a0. [DOI] [PubMed] [Google Scholar]
  52. WINTERMANS J. F. Concentrations of phosphatides and glycolipids in leaves and chloroplasts. Biochim Biophys Acta. 1960 Oct 21;44:49–54. doi: 10.1016/0006-3002(60)91521-3. [DOI] [PubMed] [Google Scholar]
  53. WOLFF J. B., PRICE L. Terminal steps of chlorophyll A biosynthesis in higher plants. Arch Biochem Biophys. 1957 Dec;72(2):293–301. doi: 10.1016/0003-9861(57)90205-9. [DOI] [PubMed] [Google Scholar]
  54. Weier T. E., Bisalputra T., Harrison A. Subunits in chloroplast membranes of Scenedesmus quadricauda. J Ultrastruct Res. 1966 Apr;15(1):38–56. doi: 10.1016/s0022-5320(66)80092-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES