Abstract
We have found a novel enzyme that decomposes D-selenocystine into pyruvate, ammonia, and elemental selenium in extracts of Clostridium sticklandii and C. sporogenes. The enzyme of C. sticklandii has been purified to homogeneity. It has a molecular weight of 74,000 and consists of two subunits identical in molecular weight (35,000). Pyridoxal 5'-phosphate is required as a cofactor. In addition to D-selenocystine, D-cystine, D-lanthionine, meso-lanthionine, and D-cysteine serve as substrates. However, D-selenocysteine, D-serine, DL-selenohomocystine, and L-amino acids are inert. The enzyme also catalyzes the beta-replacement reaction between D-selenocystine and a thiol to produce S-substituted D-cysteine. L-Selenohomocysteine also can serve as a substituent donor in the beta-replacement reaction to yield selenocystathionine.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bloom F. R., McFall E. Isolation and characterization of D-serine deaminase constitutive mutants by utilization of D-serine as sole carbon or nitrogen source. J Bacteriol. 1975 Mar;121(3):1078–1084. doi: 10.1128/jb.121.3.1078-1084.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broome S., Gilbert W. Immunological screening method to detect specific translation products. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2746–2749. doi: 10.1073/pnas.75.6.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers I., Frampton J., Goldfarb P., Affara N., McBain W., Harrison P. R. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA. EMBO J. 1986 Jun;5(6):1221–1227. doi: 10.1002/j.1460-2075.1986.tb04350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chocat P., Esaki N., Nakamura T., Tanaka H., Soda K. Microbial distribution of selenocysteine lyase. J Bacteriol. 1983 Oct;156(1):455–457. doi: 10.1128/jb.156.1.455-457.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chocat P., Esaki N., Tanizawa K., Nakamura K., Tanaka H., Soda K. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii. J Bacteriol. 1985 Aug;163(2):669–676. doi: 10.1128/jb.163.2.669-676.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosloy S. D., McFall E. Metabolism of D-serine in Escherichia coli K-12: mechanism of growth inhibition. J Bacteriol. 1973 May;114(2):685–694. doi: 10.1128/jb.114.2.685-694.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dowhan W., Jr, Snell E. E. D-serine dehydratase from Escherichia coli. II. Analytical studies and subunit structure. J Biol Chem. 1970 Sep 25;245(18):4618–4628. [PubMed] [Google Scholar]
- Esaki N., Nakamura T., Tanaka H., Soda K. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem. 1982 Apr 25;257(8):4386–4391. [PubMed] [Google Scholar]
- Esaki N., Nakamura T., Tanaka H., Suzuki T., Morino Y., Soda K. Enzymatic synthesis of selenocysteine in rat liver. Biochemistry. 1981 Jul 21;20(15):4492–4496. doi: 10.1021/bi00518a039. [DOI] [PubMed] [Google Scholar]
- Kaczorowski G., Shaw L., Laura R., Walsh C. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine. J Biol Chem. 1975 Dec 10;250(23):8921–8930. [PubMed] [Google Scholar]
- Kaczorowski G., Walsh C. Active transport in Excherichia coli B membrane vesicles. Irreversible uncoupling by chloropyruvate. J Biol Chem. 1975 Dec 10;250(23):8931–8937. [PubMed] [Google Scholar]
- Katsuki H., Yoshida T., Tanegashima C., Tanaka S. Improved direct method for determination of keto acids by 2,4-dinitrophenylhydrazine. Anal Biochem. 1971 Oct;43(2):349–356. doi: 10.1016/0003-2697(71)90263-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Nagasawa T., Ishii T., Kumagai H., Yamada H. D-Cysteine desulfhydrase of Escherichia coli. Purification and characterization. Eur J Biochem. 1985 Dec 16;153(3):541–551. doi: 10.1111/j.1432-1033.1985.tb09335.x. [DOI] [PubMed] [Google Scholar]
- Nagasawa T., Ohkishi H., Kawakami B., Yamano H., Hosono H., Tani Y., Yamada H. 3-Chloro-D-alanine chloride-lyase (deaminating) of Pseudomonas putida CR 1.1. Purification and characterization of a novel enzyme occurring in 3-chloro-D-alanine-resistant pseudomonads. J Biol Chem. 1982 Nov 25;257(22):13749–13756. [PubMed] [Google Scholar]
- Stadtman T. C. Selenium-dependent enzymes. Annu Rev Biochem. 1980;49:93–110. doi: 10.1146/annurev.bi.49.070180.000521. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Soda K. Selenocysteine. Methods Enzymol. 1987;143:240–243. doi: 10.1016/0076-6879(87)43045-0. [DOI] [PubMed] [Google Scholar]
- Zinoni F., Birkmann A., Leinfelder W., Böck A. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci U S A. 1987 May;84(10):3156–3160. doi: 10.1073/pnas.84.10.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinoni F., Birkmann A., Stadtman T. C., Böck A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4650–4654. doi: 10.1073/pnas.83.13.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
