Abstract
A technique is described for measuring the incorporation of myo-inositol-2-3H into the lipid of various regions of the guinea pig pancreatic acinar cell by radioautography. Stimulation of enzyme secretion with either pancreozymin or acetylcholine was associated with increased graining in both the basophilic cytoplasm and the nonbasophilic cytoplasm. Kinetic studies suggested that the incorporation of myo-inositol-2-3H was stimulated independently in the two regions. Most of the increment in graining due to stimulation with pancreozymin or acetylcholine plus eserine was abolished if the tissue was extracted with 2:1 chloroform-methanol before radioautography. On chromatography of lipid extracts of pancreas, the only lipid showing a detectable increment in radioactivity on stimulation with pancreozymin was phosphatidylinositol. Thus, essentially all of the increment in graining is likely to be due to increased incorporation of tritium into phosphatidylinositol. These studies, coupled with earlier studies employing differential centrifugation, indicate that on stimulation of enzyme secretion there is increased synthesis of phosphatidylinositol in the rough-surfaced endoplasmic reticulum and in the smooth-surfaced Golgi membranes. The significance of these observations is discussed in connection with membrane circulation presumed to occur in the pancreatic acinar cell on stimulation of protein secretion. It is suggested that the increased synthesis of phosphatidylinositol may be concerned with the formation of new endoplasmic reticulum and possibly Golgi membrane to replace that which is presumably converted to membrane of the zymogen granules during intracellular protein transport.
Full Text
The Full Text of this article is available as a PDF (724.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- HOKIN L. E., HOKIN M. R. CHANGES IN PHOSPHOLIPID METABOLISM ON STIMULATION OF PROTEIN SECRETION IN PANCREAS SLICES. J Histochem Cytochem. 1965 Feb;13:113–116. doi: 10.1177/13.2.113. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Phosphoinositides and protein secretion in pancreas slices. J Biol Chem. 1958 Oct;233(4):805–810. [PubMed] [Google Scholar]
- Hokin L. E. Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1369–1376. doi: 10.1073/pnas.53.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc Natl Acad Sci U S A. 1966 Feb;55(2):424–431. doi: 10.1073/pnas.55.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REDMAN C. M., HOKIN L. E. Phospholipide turnover in microsomal membranes of the pancreas during enzyme secretion. J Biophys Biochem Cytol. 1959 Oct;6:207–214. doi: 10.1083/jcb.6.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redman C. M., Siekevitz P., Palade G. E. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J Biol Chem. 1966 Mar 10;241(5):1150–1158. [PubMed] [Google Scholar]
- SANTIAGO-CALVO E., MULE S., REDMAN C. M., HOKIN M. R., HOKIN L. E. THE CHROMATOGRAPHIC SEPARATION OF POLYPHOSPHOINOSITIDES AND STUDIES ON THEIR TURNOVER IN VARIOUS TISSUES. Biochim Biophys Acta. 1964 Oct 2;84:550–562. doi: 10.1016/0926-6542(64)90125-8. [DOI] [PubMed] [Google Scholar]