Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Jun 1;33(3):679–708. doi: 10.1083/jcb.33.3.679

HIGH-RESOLUTION ELECTRON MICROSCOPIC ANALYSIS OF THE AMYLOID FIBRIL

Tsuranobu Shirahama 1, Alan S Cohen 1
PMCID: PMC2107207  PMID: 6036530

Abstract

The ultrastructural organization of the fibrous component of amyloid has been analyzed by means of high resolution electron microscopy of negatively stained isolated amyloid fibrils and of positively stained amyloid fibrils in thin tissue sections. It was found that a number of subunits could be resolved according to their dimensions. The following structural organization is proposed. The amyloid fibril, the fibrous component of amyloid as seen in electron microscopy of thin tissue sections, consists of a number of filaments aggregated side-by-side. These amyloid filaments are approximately 75–80 A in diameter and consist of five (or less likely six) subunits (amyloid protofibrils) which are arranged parallel to each other, longitudinal or slightly oblique to the long axis of the filament. The filament has often seemed to disperse into several longitudinal rows. The amyloid protofibril is about 25–35 A wide and appears to consist of two or three subunit strands helically arranged with a 35–50-A repeat (or, less likely, is composed of globular subunits aggregated end-to-end). These amyloid subprotofibrillar strands measure approximately 10–15 A in diameter.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAM D., KOFFLER H. IN VITRO FORMATION OF FLAGELLA-LIKE FILAMENTS AND OTHER STRUCTURES FROM FLAGELLIN. J Mol Biol. 1964 Jul;9:168–185. doi: 10.1016/s0022-2836(64)80098-x. [DOI] [PubMed] [Google Scholar]
  2. BANGHAM A. D., HORNE R. W., GLAUERT A. M., DINGLE J. T., LUCY J. A. Action of saponin on biological cell membranes. Nature. 1962 Dec 8;196:952–955. doi: 10.1038/196952a0. [DOI] [PubMed] [Google Scholar]
  3. BANGHAM A. D., HORNE R. W. NEGATIVE STAINING OF PHOSPHOLIPIDS AND THEIR STRUCTURAL MODIFICATION BY SURFACE-ACTIVE AGENTS AS OBSERVED IN THE ELECTRON MICROSCOPE. J Mol Biol. 1964 May;8:660–668. doi: 10.1016/s0022-2836(64)80115-7. [DOI] [PubMed] [Google Scholar]
  4. BATTAGLIA S. [Electronoptic studies on liver amyloid in mice]. Beitr Pathol Anat. 1962 Jun;126:300–320. [PubMed] [Google Scholar]
  5. BRADBURY S., MICKLEM H. S. AMYLOIDOSIS AND LYMPHOID APLASIA IN MOUSE RADIATION CHIMERAS. Am J Pathol. 1965 Feb;46:263–277. [PMC free article] [PubMed] [Google Scholar]
  6. BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
  7. Benditt E. P., Eriksen N. Amyloid. 3. A protein related to the subunit structure of human amyloid fibrils. Proc Natl Acad Sci U S A. 1966 Feb;55(2):308–316. doi: 10.1073/pnas.55.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bladen H. A., Nylen M. U., Glenner G. G. The ultrastructure of human amyloid as revealed by the negative staining technique. J Ultrastruct Res. 1966 Mar;14(5):449–459. doi: 10.1016/s0022-5320(66)80075-8. [DOI] [PubMed] [Google Scholar]
  9. CAESAR R. [Electron microscopic research on human amyloid in different primary diseases]. Pathol Microbiol (Basel) 1961;24:387–396. [PubMed] [Google Scholar]
  10. CAESAR R. [The fine structure of the spleen and liver in experimental amyloidosis]. Z Zellforsch Mikrosk Anat. 1960;52:653–673. [PubMed] [Google Scholar]
  11. CARNES W. H., FORKER B. R. Metachromasy of amyloid; a spectrophotometric study with particular reference to the dye-chromotrope bond. Lab Invest. 1956 Jan-Feb;5(1):21–43. [PubMed] [Google Scholar]
  12. CATHCART E. S., COMERFORD F. R., COHEN A. S. IMMUNOLOGIC STUDIES ON A PROTEIN EXTRACTED FROM HUMAN SECONDARY AMYLOID. N Engl J Med. 1965 Jul 15;273:143–146. doi: 10.1056/NEJM196507152730306. [DOI] [PubMed] [Google Scholar]
  13. COHEN A. S., CALKINS E. A study of the fine structure of the kidney in casein-induced amyloidosis in rabbits. J Exp Med. 1960 Sep 1;112:479–490. doi: 10.1084/jem.112.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. COHEN A. S., CALKINS E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature. 1959 Apr 25;183(4669):1202–1203. doi: 10.1038/1831202a0. [DOI] [PubMed] [Google Scholar]
  15. COHEN A. S., CALKINS E., LEVENE C. I. Studies on experimental amyloidosis. I. Analysis of histology and staining reactions of casein-induced amyloidosis in the rabbit. Am J Pathol. 1959 Sep-Oct;35:971–989. [PMC free article] [PubMed] [Google Scholar]
  16. COHEN A. S., CALKINS E. THE ISOLATION OF AMYLOID FIBRILS AND A STUDY OF THE EFFECT OF COLLAGENASE AND HYALURONIDASE. J Cell Biol. 1964 Jun;21:481–486. doi: 10.1083/jcb.21.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. COHEN A. S., FRENSDORFF A., LAMPRECHT S., CALKINS E. A study of the fine structure of the amyloid associated with familial Mediterranean fever. Am J Pathol. 1962 Nov;41:567–578. [PMC free article] [PubMed] [Google Scholar]
  18. COHEN A. S., WEISS L., CALKINS E. Electron microscopic observations of the spleen during the induction of experimental amyloidosis in the rabbit. Am J Pathol. 1960 Oct;37:413–431. [PMC free article] [PubMed] [Google Scholar]
  19. Cathcart E. S., Cohen A. S. The relation between isolated human amyloid fibrils and human gamma-globulin and its subunits. J Immunol. 1966 Feb;96(2):239–244. [PubMed] [Google Scholar]
  20. Cohen A. S., Gross E., Shirahama T. The light and electron microscopic autoradiographic demonstration of local amyloid formation in spleen explants. Am J Pathol. 1965 Dec;47(6):1079–1111. [PMC free article] [PubMed] [Google Scholar]
  21. Colvill A. J., Van Bruggen E. F., Fernández-Morán H. Physical properties of a DNA-dependent RNA polymerase from Escherichia coli. J Mol Biol. 1966 May;17(1):302–304. doi: 10.1016/s0022-2836(66)80113-4. [DOI] [PubMed] [Google Scholar]
  22. Dobb M. G. The structure of keratin protofibrils. J Ultrastruct Res. 1966 Feb;14(3):294–299. doi: 10.1016/s0022-5320(66)80050-3. [DOI] [PubMed] [Google Scholar]
  23. ERICSSON J. L., SALADINO A. J., TRUMP B. F. ELECTRON MICROSCOPIC OBSERVATIONS OF THE INFLUENCE OF DIFFERENT FIXATIVES ON THE APPEARANCE OF CELLULAR ULTRASTRUCTURE. Z Zellforsch Mikrosk Anat. 1965 Apr 8;66(2):161–181. doi: 10.1007/BF00344332. [DOI] [PubMed] [Google Scholar]
  24. Emeson E. E., Kikkawa Y., Gueft B. New features of amyloid found after digestion with trypsin. J Cell Biol. 1966 Mar;28(3):570–577. doi: 10.1083/jcb.28.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. FERNANDEZ-MORAN H., FINEAN J. B. Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol. 1957 Sep 25;3(5):725–748. doi: 10.1083/jcb.3.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. FILSHIE B. K., ROGERS G. E. An electron microscope study of the fine structure of feather keratin. J Cell Biol. 1962 Apr;13:1–12. doi: 10.1083/jcb.13.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. FRASER R. D., MACRAE T. P., MILLER A. THE COILED-COIL MODEL OF ALPHA-KERATIN STRUCTURE. J Mol Biol. 1964 Oct;10:147–156. doi: 10.1016/s0022-2836(64)80034-6. [DOI] [PubMed] [Google Scholar]
  28. FRASER R. D., MACRAE T. P., ROGERS G. E. Molecular organization in alpha-keratin. Nature. 1962 Mar 17;193:1052–1055. doi: 10.1038/1931052a0. [DOI] [PubMed] [Google Scholar]
  29. FRASER R. D., MACRAE T. P. The molecular configuration of alpha-keratin. J Mol Biol. 1961 Oct;3:640–647. doi: 10.1016/s0022-2836(61)80027-2. [DOI] [PubMed] [Google Scholar]
  30. FUCHS E., ZILLIG W., HOFSCHNEIDER P. H., PREUSS A. PREPARATION AND PROPERTIES OF RNA-POLYMERASE PARTICLES. J Mol Biol. 1964 Dec;10:546–550. doi: 10.1016/s0022-2836(64)80076-0. [DOI] [PubMed] [Google Scholar]
  31. GLAUERT A. M., KERRIDGE D., HORNE R. W. THE FINE STRUCTURE AND MODE OF ATTACHMENT OF THE SHEATHED FLAGELLUM OF VIBRIO METCHNIKOVII. J Cell Biol. 1963 Aug;18:327–336. doi: 10.1083/jcb.18.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. GOTTE L., SERAFINI-FRACASSINI A. Electron microscope observations on the structure of elastin. J Atheroscler Res. 1963 May-Jun;3:247–251. doi: 10.1016/s0368-1319(63)80078-2. [DOI] [PubMed] [Google Scholar]
  33. GOTTE L., STERN P., ELSDEN D. F., PARTRIDGE S. M. The chemistry of connective tissues. 8. The composition of elastin from three bovine tissues. Biochem J. 1963 May;87:344–351. doi: 10.1042/bj0870344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. GUEFT B., GHIDONI J. J. THE SITE OF FORMATION AND ULTRASTRUCTURE OF AMYLOID. Am J Pathol. 1963 Nov;43:837–854. [PMC free article] [PubMed] [Google Scholar]
  35. Glimcher M. J., Katz E. P., Travis D. F. The solubilization and reconstitution of bone collagen. J Ultrastruct Res. 1965 Aug;13(1):163–171. doi: 10.1016/s0022-5320(65)80094-6. [DOI] [PubMed] [Google Scholar]
  36. HEEFNER W. A., SORENSON G. D. Experimental amyloidosis. I. Light and electron microscopic observation of spleen and lymph nodes. Lab Invest. 1962 Aug;11:585–593. [PubMed] [Google Scholar]
  37. HRUBAN Z., SWIFT H. URICASE: LOCALIZATION IN HEPATIC MICROBODIES. Science. 1964 Dec 4;146(3649):1316–1318. doi: 10.1126/science.146.3649.1316. [DOI] [PubMed] [Google Scholar]
  38. HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
  39. Heyn A. N. The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol. 1966 May;29(2):181–197. doi: 10.1083/jcb.29.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. JOHNSON D. J., SIKORSKI J. Molecular and fine structure of alpha-keratin. Nature. 1962 Apr 7;194:31–34. doi: 10.1038/194031a0. [DOI] [PubMed] [Google Scholar]
  41. KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
  42. LOWY J., HANSON J. ELECTRON MICROSCOPE STUDIES OF BACTERIAL FLAGELLA. J Mol Biol. 1965 Feb;11:293–313. doi: 10.1016/s0022-2836(65)80059-6. [DOI] [PubMed] [Google Scholar]
  43. LOWY J., HANSON J. STRUCTURE OF BACTERIAL FLAGELLA. Nature. 1964 May 9;202:538–540. doi: 10.1038/202538a0. [DOI] [PubMed] [Google Scholar]
  44. LUCY J. A., GLAUERT A. M. STRUCTURE AND ASSEMBLY OF MACROMOLECULAR LIPID COMPLEXES COMPOSED OF GLOBULAR MICELLES. J Mol Biol. 1964 May;8:727–748. doi: 10.1016/s0022-2836(64)80121-2. [DOI] [PubMed] [Google Scholar]
  45. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lowy J. Structure of the proximal ends of bacterial flagella. J Mol Biol. 1965 Nov;14(1):297–299. doi: 10.1016/s0022-2836(65)80251-0. [DOI] [PubMed] [Google Scholar]
  47. MASON B. J. The growth of snow crystals. Sci Am. 1961 Jan;204:120–131. doi: 10.1038/scientificamerican0161-120. [DOI] [PubMed] [Google Scholar]
  48. MOVAT H. Z. The fine structure of the glomerulus in amyloidosis. Arch Pathol. 1960 Mar;69:323–332. [PubMed] [Google Scholar]
  49. Marx A. J., Moskal J. F., Gueft B. Prostatic corpora amylacea. A study with the electron microscope and electron probe. Arch Pathol. 1965 Nov;80(5):487–494. [PubMed] [Google Scholar]
  50. Newcombe D. S., Cohen A. S. Solubility characteristics of isolated amyloid fibrils. Biochim Biophys Acta. 1965 Jul 8;104(2):480–486. doi: 10.1016/0304-4165(65)90353-3. [DOI] [PubMed] [Google Scholar]
  51. OHAD I., DANON D., HESTRIN S. The use of shadow-casting technique for measurement of the width of elongated particles. J Cell Biol. 1963 May;17:321–326. doi: 10.1083/jcb.17.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Olsen B. R. Electron microscope studies on collagen. IV. Structure of vitrosin fibrils and interaction properties of vitrosin molecules. J Ultrastruct Res. 1965 Aug;13(1):172–191. doi: 10.1016/s0022-5320(65)80095-8. [DOI] [PubMed] [Google Scholar]
  53. PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. PETERSON R. P. A note on the structure of crayfish myofilaments. J Cell Biol. 1963 Jul;18:213–218. doi: 10.1083/jcb.18.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. PUCHTLER H., SWEAT F., KUHNS J. G. ON THE BINDING OF DIRECT COTTON DYES BY AMYLOID. J Histochem Cytochem. 1964 Dec;12:900–907. doi: 10.1177/12.12.900. [DOI] [PubMed] [Google Scholar]
  56. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. ROGERS G. E. Electron microscopy of wool. J Ultrastruct Res. 1959 Mar;2(3):309–330. doi: 10.1016/s0022-5320(59)80004-6. [DOI] [PubMed] [Google Scholar]
  58. ROMHANYI G. Ueber die submikroskopische Struktur des Amyloids. Schweiz Z Pathol Bakteriol. 1949;12(3):253–262. [PubMed] [Google Scholar]
  59. SORENSON G. D., SHIMAMURA T. EXPERIMENTAL AMYLOIDOSIS. 3. LIGHT AND ELECTRON MICROSCOPIC OBSERVATIONS OF RENAL GLOMERULI. Lab Invest. 1964 Nov;13:1409–1417. [PubMed] [Google Scholar]
  60. Shirahama T., Cohen A. S. A congo red staining method for epoxy-embedded amyloid. J Histochem Cytochem. 1966 Oct;14(10):725–729. doi: 10.1177/14.10.725. [DOI] [PubMed] [Google Scholar]
  61. Shirahama T., Cohen A. S. Structure of amyloid fibrils after negative staining and high-resolution electron microscopy. Nature. 1965 May 15;206(985):737–738. doi: 10.1038/206737a0. [DOI] [PubMed] [Google Scholar]
  62. Sorenson G. D., Heefner W. A., Kirkpatrick J. B. Experimental amyloidosis. II. Light and electron microscopic observations of liver. Am J Pathol. 1964 Apr;44(4):629–644. [PMC free article] [PubMed] [Google Scholar]
  63. Suzuki Y., Churg J., Grishman E., Mautner W., Dachs S. The Mesangium of the Renal Glomerulus: Electron Microscopic Studies of Pathologic Alterations. Am J Pathol. 1963 Oct;43(4):555–578. [PMC free article] [PubMed] [Google Scholar]
  64. Sweat F., Puchtler H. Demonstration of amyloid with direct cotton dyes. Experiences with a new method for the selective staining of amyloid by sirius red F3BA and sirius supra scarlet GG-CF. Arch Pathol. 1965 Dec;80(6):613–620. [PubMed] [Google Scholar]
  65. TERRY R. D., GONATAS N. K., WEISS M. ULTRASTRUCTURAL STUDIES IN ALZHEIMER'S PRESENILE DEMENTIA. Am J Pathol. 1964 Feb;44:269–297. [PMC free article] [PubMed] [Google Scholar]
  66. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. WOOD R. L., LUFT J. H. THE INFLUENCE OF BUFFER SYSTEMS ON FIXATION WITH OSMIUM TETROXIDE. J Ultrastruct Res. 1965 Feb;12:22–45. doi: 10.1016/s0022-5320(65)80004-1. [DOI] [PubMed] [Google Scholar]
  68. Wolman M., Bubis J. J. The cause of the green polarization color of amyloid stained with Congo red. Histochemie. 1965 Jan 12;4(5):351–356. doi: 10.1007/BF00306246. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES