Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Jul 1;34(1):311–326. doi: 10.1083/jcb.34.1.311

THE TRANSFORMATION OF THE PLASMODIUM GALLINACEUM OOCYST IN AEDES AEGYPTI MOSQUITOES

John A Terzakis 1, Helmuth Sprinz 1, Ronald A Ward 1
PMCID: PMC2107220  PMID: 6033538

Abstract

Sporoblast and sporozoite formation from oocysts of the avian malarial parasite, Plasmodium gallinaceum, after the seventh day of infection in Aedes aegypti mosquitoes offers an interesting example of differentiation involving the appearance and modification of several cellular components. Sporoblast formation is preceded by (a) invaginations of the oocyst capsule into the oocyst cytoplasm, (b) subcapsular vacuolization and cleft formation, (c) the appearance of small tufts of capsule material on the previously noted invaginations, and (d) linear dense areas located just below the oocyst plasma membrane which predetermine the site of emerging sporozoites from the sporoblast. The subcapsular clefts subdivide the once-solid oocyst into sporoblast peninsulae. Within the sporoblast, nuclei migrate from the random distribution seen in the solid oocyst and come to lie at the periphery of the sporoblast just below the linear dense areas noted in the earlier stage. A typical nuclear fiber apparatus occurs in most of the nuclei seen in random sections at this stage although such a fiber apparatus may occasionally be seen in the solid oocyst stage. The nucleus, its associated fiber apparatus, and the overlying dense area appear to induce the onset of sporozoite budding from the sporoblast as well as the formation of the sporozoite pellicular complex and the paired organelle precursor. Several mitochondria are present in each sporozoite, in contrast to the single mitochondrion seen in the merozoites of the erythrocytic and exoerythrocytic stages of avian malaria infection. The paired organelles and associated dense inclusion bodies are formed by condensation of an irregular meshwork of membrane-bound, coarse, dense material. The nature of small, particulate cytoplasmic inclusions is described.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Huff C. G., Sprinz H. Fine structure of the asexual stages of Plasmodium elongatum. J Cell Biol. 1967 Jul;34(1):229–249. doi: 10.1083/jcb.34.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aikawa M. The fine structure of the erythrocytic stages of three avian malarial parasites, Plasmodium fallax, P. lophurae, and P. cathemerium. Am J Trop Med Hyg. 1966 Jul;15(4):449–471. doi: 10.4269/ajtmh.1966.15.449. [DOI] [PubMed] [Google Scholar]
  3. GARNHAM P. C., BIRD R. G., BAKER J. R. Electron microscope studies of motile stages of malaria parasites. I. The fine structure of the sporozoites of Haemamoeba (Plasmodium) gallinacea. Trans R Soc Trop Med Hyg. 1960 May;54:274–278. doi: 10.1016/0035-9203(60)90075-4. [DOI] [PubMed] [Google Scholar]
  4. GARNHAM P. C., BIRD R. G., BAKER J. R. Electron microscope studies of motile stages of malaria parasites. III. The ookinetes of Haemamoeba and Plasmodium. Trans R Soc Trop Med Hyg. 1962 Mar;56:116–120. doi: 10.1016/0035-9203(62)90137-2. [DOI] [PubMed] [Google Scholar]
  5. Hepler P. K., Huff C. G., Sprinz H. The fine structure of the exoerythrocytic stages of Plasmodium fallax. J Cell Biol. 1966 Aug;30(2):333–358. doi: 10.1083/jcb.30.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moor H. Ultrastrukturen im Zellkern der Bäckerhefe. J Cell Biol. 1966 Apr;29(1):153–155. doi: 10.1083/jcb.29.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RUDZINSKA M. A., SEDAR A. W. Mitochondria of protozoa. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):331–336. doi: 10.1083/jcb.2.4.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. TERZIAN L. A. The comparative morphological and physiological effects of various drugs on the sporogonous cycle of Plasmodium gallinaceum in Aedes aegypti. J Cell Physiol. 1955 Oct;46(2):279–299. doi: 10.1002/jcp.1030460206. [DOI] [PubMed] [Google Scholar]
  11. Terzakis J. A., Sprinz H., Ward R. A. Sporoblast and sporozoite formation in Plasmodium gallinaceum infection of Aedes aegypti. Mil Med. 1966 Sep;131(9 Suppl):984–992. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES