Abstract
Dorsal root ganglia from fetal rats were explanted on collagen-coated coverslips and carried in Maximow double-coverslip assemblies for periods up to 3 months. These cultured ganglia were studied in the living state, in stained whole mounts, and in sections after OsO4 fixation and Epon embedment. From the central cluster of nerve cell bodies, neurites emerge to form a rich network of fascicles which often reach the edge of the carrying coverslip. The neurons resemble their in vivo counterparts in nuclear and cytoplasmic content and organization; e.g., they appear as "light" or "dark" cells, depending on the amount of cytoplasmic neurofilaments. Satellite cells form a complete investment around the neuronal soma and are themselves everywhere covered by basement membrane. The neuron-satellite cell boundary is complicated by spinelike processes arising from the neuronal soma. Neuron size, myelinated fiber diameter, and internode length in the cultures do not reach the larger of the values known for ganglion and peripheral nerve in situ (30). Unmyelinated and myelinated nerve fibers and associated Schwann cells and endoneurial and perineurial components are organized into typical fascicles. The relationship of the Schwann cell and its single myelinated fiber or numerous unmyelinated fibers and the properties of myelin, such as lamellar spacing, mesaxons, Schmidt-Lanterman clefts, nodes of Ranvier, and protuberances, mimic the in vivo pattern. It is concluded that cultivation of fetal rat dorsal root ganglia by this technique fosters maturation and long-term maintenance of all the elements that comprise this cellular community in vivo (except vascular components) and, furthermore, allows these various components to relate faithfully to one another to produce an organotypic model of sensory ganglion tissue.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARGMANN W., LINDNER E. UBER DEN FEINBAU DES NEBENNIERENMARKES DES IGELS (ERINACEUS EUROPAEUS L.) Z Zellforsch Mikrosk Anat. 1964 Dec 3;64:868–912. [PubMed] [Google Scholar]
- BARTON A. A. An electron microscope study of degeneration and regeneration of nerve. Brain. 1962 Dec;85:799–808. doi: 10.1093/brain/85.4.799. [DOI] [PubMed] [Google Scholar]
- BODIAN D. AN ELECTRON-MICROSCOPIC STUDY OF THE MONKEY SPINAL CORD. I. FINE STRUCTURE OF NORMAL MOTOR COLUMN. II. EFFECTS OF RETROGRADE CHROMATOLYSIS. III. CYTOLOGIC EFFECTS OF MILD AND VIRULENT POLIOVIRUS INFECTION. Bull Johns Hopkins Hosp. 1964 Jan;114:13–119. [PubMed] [Google Scholar]
- BORNSTEIN M. B., MURRAY M. R. Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of new-born rat and kitten cerebellum. J Biophys Biochem Cytol. 1958 Sep 25;4(5):499–504. doi: 10.1083/jcb.4.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BORNSTEIN M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 1958 Mar-Apr;7(2):134–137. [PubMed] [Google Scholar]
- BUNGE R. P., BUNGE M. B., PETERSON E. R. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD. J Cell Biol. 1965 Feb;24:163–191. doi: 10.1083/jcb.24.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAIN S. M., BENITEZ H., VATTER A. E. SOME CYTOLOGIC EFFECTS OF SALIVARY NERVE-GROWTH FACTOR ON TISSUE CULTURES OF PERIPHERAL GANGLIA. Ann N Y Acad Sci. 1964 Oct 9;118:206–231. doi: 10.1111/j.1749-6632.1964.tb33981.x. [DOI] [PubMed] [Google Scholar]
- DAWSON I. M., HOSSACK J., WYBURN G. M. Observations on the Nissl's substance, cytoplasmic filaments and the nuclear membrane of spinal ganglion cells. Proc R Soc Lond B Biol Sci. 1955 Aug 16;144(914):132–142. doi: 10.1098/rspb.1955.0039. [DOI] [PubMed] [Google Scholar]
- DE ROBERTIS E. D., BENNETT H. S. A submicroscopic vesicular component of Schwann cells and nerve satellite cells. Exp Cell Res. 1954 May;6(2):543–545. doi: 10.1016/0014-4827(54)90209-8. [DOI] [PubMed] [Google Scholar]
- ELFVIN L. G. Electron microscopic investigation of the plasma membrane and myelin sheath of autonomic nerve fibers in the cat. J Ultrastruct Res. 1961 Aug;5:388–407. doi: 10.1016/s0022-5320(61)80015-4. [DOI] [PubMed] [Google Scholar]
- ELFVIN L. G. Electron-microscopic investigation of filament structures in unmyelinated fibers of cat splenic nerve. J Ultrastruct Res. 1961 Mar;5:51–64. doi: 10.1016/s0022-5320(61)80005-1. [DOI] [PubMed] [Google Scholar]
- ELFVIN L. G. The ultrastructure of the nodes of Ranvier in cat sympathetic nerve fibers. J Ultrastruct Res. 1961 Aug;5:374–387. doi: 10.1016/s0022-5320(61)80014-2. [DOI] [PubMed] [Google Scholar]
- GASSER H. S. Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J Gen Physiol. 1955 May 20;38(5):709–728. doi: 10.1085/jgp.38.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRILLO M. A., PALAY S. L. Ciliated Schwann cells in the autonomic nervous system of the adult rat. J Cell Biol. 1963 Feb;16:430–436. doi: 10.1083/jcb.16.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HESS A. The fine structure and morphological organization of non-myelinated nerve fibres. Proc R Soc Lond B Biol Sci. 1956 Mar 13;144(917):496–506. doi: 10.1098/rspb.1956.0006. [DOI] [PubMed] [Google Scholar]
- HESS A. The fine structure of young and old spinal ganglia. Anat Rec. 1955 Dec;123(4):399–423. doi: 10.1002/ar.1091230403. [DOI] [PubMed] [Google Scholar]
- HIRAOKA J. I., VANBREEMEN V. L. ULTRASTRUCTURE OF THE NUCLEOLUS AND THE NUCLEAR ENVELOPE OF SPINAL GANGLION CELLS. J Comp Neurol. 1963 Aug;121:69–87. doi: 10.1002/cne.901210107. [DOI] [PubMed] [Google Scholar]
- IRVING E. A., TOMLIN S. G. Collagen, reticulum and their argyrophilic properties. Proc R Soc Lond B Biol Sci. 1954 Feb 18;142(906):113–125. doi: 10.1098/rspb.1954.0009. [DOI] [PubMed] [Google Scholar]
- KOTANI M., KAWASHIMA K. Observations of the spinal ganglion cells of senile mice with the electron microscope. Okajimas Folia Anat Jpn. 1961 Nov;37:451–456. doi: 10.2535/ofaj1936.37.6_451. [DOI] [PubMed] [Google Scholar]
- Masurovsky E. B., Bunge M. B., Bunge R. P. Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation in vitro. I. Changes in neurons and satellite cells. J Cell Biol. 1967 Feb;32(2):467–496. doi: 10.1083/jcb.32.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masurovsky E. B., Bunge M. B., Bunge R. P. Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation in vitro. II. Changes in Schwann cells, myelin sheaths, and nerve fibers. J Cell Biol. 1967 Feb;32(2):497–518. doi: 10.1083/jcb.32.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAI J. Dissociated dorsal root ganglia in tissue culture. Am J Anat. 1956 Jul;99(1):81–129. doi: 10.1002/aja.1000990105. [DOI] [PubMed] [Google Scholar]
- NAKAI J. Studies on the mechanism determining the course of nerve fibers in tissue culture. II. The mechanism of fasciculation. Z Zellforsch Mikrosk Anat. 1960;52:427–449. doi: 10.1007/BF00339758. [DOI] [PubMed] [Google Scholar]
- NATHANIEL E. J., PEASE D. C. COLLAGEN AND BASEMENT MEMBRANE FORMATION BY SCHWANN CELLS DURING NERVE REGENERATION. J Ultrastruct Res. 1963 Dec;52:550–560. doi: 10.1016/s0022-5320(63)80084-2. [DOI] [PubMed] [Google Scholar]
- NATHANIEL E. J., PEASE D. C. REGENERATIVE CHANGES IN RAT DORSAL ROOTS FOLLOWING WALERIAN DEGENERATION. J Ultrastruct Res. 1963 Dec;52:533–549. doi: 10.1016/s0022-5320(63)80083-0. [DOI] [PubMed] [Google Scholar]
- Nakajima S. Selectivity in fasciculation of of nerve fibers in vitro. J Comp Neurol. 1965 Oct;125(2):193–195. doi: 10.1002/cne.901250204. [DOI] [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PANNESE E. Observations on the morphology, submicroscopic structure and biological properties of satellite cells (s.c.) in sensory ganglia of mammals. Z Zellforsch Mikrosk Anat. 1960;52:567–597. doi: 10.1007/BF00339847. [DOI] [PubMed] [Google Scholar]
- PETERS A., MUIR A. R. The relationship between axons and Schwann cells during development of peripheral nerves in the rat. Q J Exp Physiol Cogn Med Sci. 1959 Jan;44(1):117–130. doi: 10.1113/expphysiol.1959.sp001366. [DOI] [PubMed] [Google Scholar]
- PETERSON E. R., CRAIN S. M., MURRAY M. R. DIFFERENTIATION AND PROLONGED MAINTENANCE OF BIOELECTRICALLY ACTIVE SPINAL CORD CULTURES (RAT, CHICK AND HUMAN). Z Zellforsch Mikrosk Anat. 1965 Mar 25;66(1):130–154. doi: 10.1007/BF00339322. [DOI] [PubMed] [Google Scholar]
- PETERSON E. R., MURRAY M. R. Modification of development in isolated dorsal root ganglia by nutritional and physical factors. Dev Biol. 1960 Oct;2:461–476. doi: 10.1016/0012-1606(60)90028-2. [DOI] [PubMed] [Google Scholar]
- PETERSON E. R., MURRAY M. R. Myelin sheath formation in cultures of avian spinal ganglia. Am J Anat. 1955 May;96(3):319–355. doi: 10.1002/aja.1000960302. [DOI] [PubMed] [Google Scholar]
- PETERSON E. R., MURRAY M. R. PATTERNS OF PERIPHERAL DEMYELIMINATION IN VITRO. Ann N Y Acad Sci. 1965 Mar 31;122:39–50. [PubMed] [Google Scholar]
- REVEL J. P. ELECTRON MICROSCOPY OF GLYCOGEN. J Histochem Cytochem. 1964 Feb;12:104–114. doi: 10.1177/12.2.104. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON K. C. The fine structure of autonomic nerve endings in smooth muscle of the rat vas deferens. J Anat. 1962 Oct;96:427–442. [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. IN VITRO SELECTION OF THE MITOTIC CELL FOR SUBSEQUENT ELECTRON MICROSCOPY. J Cell Biol. 1964 Feb;20:356–359. doi: 10.1083/jcb.20.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D., BODENHEIMER T. S., STAGE D. E. THE ULTRASTRUCTURE OF MAUTHNER CELL SYNAPSES AND NODES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:159–199. doi: 10.1083/jcb.19.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. D. The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath. J Biophys Biochem Cytol. 1958 Jan 25;4(1):39–46. doi: 10.1083/jcb.4.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUTH J. The fine structure of acoustic ganglia in the rat. J Cell Biol. 1962 Feb;12:329–359. doi: 10.1083/jcb.12.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANBORN E., KOEN P. F., MACNABB J. D., MOORE G. CYTOPLASMIC MICROTUBULES IN MAMMALIAN CELLS. J Ultrastruct Res. 1964 Aug;11:123–138. doi: 10.1016/s0022-5320(64)80097-6. [DOI] [PubMed] [Google Scholar]
- STEINER J. W., MIYAI K., PHILLIPS M. J. ELECTRON MICROSCOPY OF MEMBRANE-PARTICLE ARRAYS IN LIVER CELLS OF ETHIONINE-INTOXICATED RATS. Am J Pathol. 1964 Feb;44:169–214. [PMC free article] [PubMed] [Google Scholar]
- THOMAS P. K. CHANGES IN THE ENDONEURIAL SHEATHS OF PERIPHERAL MYELINATED NERVE FIBRES DURING WALLERIAN DEGENERATION. J Anat. 1964 Apr;98:175–182. [PMC free article] [PubMed] [Google Scholar]
- Tennyson V. M. Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol. 1965 Jun;124(3):267–317. doi: 10.1002/cne.901240302. [DOI] [PubMed] [Google Scholar]
- UZMAN B. G., NOGUEIRA-GRAF G. Electron microscope studies of the formation of nodes of Ranvier in mouse sciatic nerves. J Biophys Biochem Cytol. 1957 Jul 25;3(4):589–598. doi: 10.1083/jcb.3.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBSTER H. D., SPIRO D. Phase and electron microscopic studies of experimental demyelination. I. Variations in myelin sheath contour in normal guinea pig sciatic nerve. J Neuropathol Exp Neurol. 1960 Jan;19:42–69. [PubMed] [Google Scholar]
- WEBSTER H. D. Transient, focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J Cell Biol. 1962 Feb;12:361–383. doi: 10.1083/jcb.12.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBSTER H., COLLINS G. H. COMPARISON OF OSMIUM TETROXIDE AND GLUTARALDEHYDE PERFUSION FIXATION FOR THE ELECTRON MICROSCOPIC STUDY OF THE NORMAL RAT PERIPHERAL NERVOUS SYSTEM. J Neuropathol Exp Neurol. 1964 Jan;23:109–126. doi: 10.1093/jnen/23.1.109. [DOI] [PubMed] [Google Scholar]
- WINKLER G. F. IN VITRO DEMYELINATION OF PERIPHERAL NERVE INDUCED WITH SENSITIZED CELLS. Ann N Y Acad Sci. 1965 Mar 31;122:287–296. doi: 10.1111/j.1749-6632.1965.tb20213.x. [DOI] [PubMed] [Google Scholar]
- WOLF M. K. DIFFERENTIATION OF NEURONAL TYPES AND SYNAPSES IN MYELINATING CULTURES OF MOUSE CEREBELLUM. J Cell Biol. 1964 Jul;22:259–279. doi: 10.1083/jcb.22.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonezawa T., Iwanami H. An experimental study of thiamine deficiency in nervous tissue, using tissue culture technics. J Neuropathol Exp Neurol. 1966 Jul;25(3):362–372. doi: 10.1097/00005072-196607000-00002. [DOI] [PubMed] [Google Scholar]