Abstract
Mitotic apparatuses (MA) isolated from metaphase sea urchin eggs in 12% hexylene glycol at pH 6.4 can be dissolved rapidly in 0.6 M KCl, and more than one-half of the total protein of the MA is soluble under these conditions. In the phase-contrast microscope, the fibrous structure of the MA can be seen to disintegrate in KCl solution, leaving only granular material which, in the electron microscope has been seen to be largely vesicular, with no evidence of microtubules or other fibrous elements. The KCl-soluble material thus must contain the soluble components of the microtubules and consists of one major, homogeneous component with a sedimentation coefficient of 22 Svedbergs, and a much smaller amount of more heterogeneous material sedimenting at 4-5S. A component similar to the 22S component can be identified in extracts of unfertilized eggs, where it forms approximately 8% of the total cell protein. The amount of this protein present in the cell is considerably in excess of that involved in the MA, as can be shown by its presence in the soluble supernate from a mitotic apparatus isolation. This protein must form part of, or be associated with, the fibrous structure of the MA in some fashion that allows its release only upon the dissolution of the mitotic apparatus.
Full Text
The Full Text of this article is available as a PDF (930.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEHNKE O. A PRELIMINARY REPORT ON "MICROTUBULES" IN UNDIFFERENTIATED AND DIFFERENTIATED VERTEBRATE CELLS. J Ultrastruct Res. 1964 Aug;11:139–146. doi: 10.1016/s0022-5320(64)80098-8. [DOI] [PubMed] [Google Scholar]
- BIBRING T., COUSINEAU G. H. PERCENTAGE INCORPORATION OF LEUCINE LABELLED WITH CARBON-14 INTO ISOLATED MITOTIC APPARATUS DURING EARLY DEVELOPMENT OF SEA URCHIN EGGS. Nature. 1964 Nov 21;204:805–807. doi: 10.1038/204805a0. [DOI] [PubMed] [Google Scholar]
- DALES S. ASSOCIATION BETWEEN THE SPINDLE APPARATUS AND REOVIRUS. Proc Natl Acad Sci U S A. 1963 Aug;50:268–275. doi: 10.1073/pnas.50.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIRKSEN E. R. THE ISOLATION AND CHARACTERIZATION OF ASTERS FROM ARTIFICIALLY ACTIVATED SEA URCHIN EGGS. Exp Cell Res. 1964 Nov;36:256–269. doi: 10.1016/0014-4827(64)90206-x. [DOI] [PubMed] [Google Scholar]
- GROSS P. R., COUSINEAU G. H. SYNTHESIS OF SPINDLE-ASSOCIATED PROTEINS IN EARLY CLEAVAGE. J Cell Biol. 1963 Oct;19:260–265. doi: 10.1083/jcb.19.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS P. Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J Cell Biol. 1962 Sep;14:475–487. doi: 10.1083/jcb.14.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANE R. E., HERSH R. T. The isolation and preliminary characterization of a major soluble protein of the sea urchin egg. Exp Cell Res. 1959 Jan;16(1):59–69. doi: 10.1016/0014-4827(59)90195-8. [DOI] [PubMed] [Google Scholar]
- KANE R. E. The mitotic apparatus. Fine structure of the isolated unit. J Cell Biol. 1962 Nov;15:279–287. doi: 10.1083/jcb.15.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KANE R. E. The mitotic apparatus: isolation by controlled pH. J Cell Biol. 1962 Jan;12:47–55. doi: 10.1083/jcb.12.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KRISHAN A., BUCK R. C. STRUCTURE OF THE MITOTIC SPINDLE IN L STRAIN FIBROBLASTS. J Cell Biol. 1965 Mar;24:433–444. doi: 10.1083/jcb.24.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane R. E., Forer A. The mitotic apparatus. Structural changes after isolation. J Cell Biol. 1965 Jun;25(3 Suppl):31–39. doi: 10.1083/jcb.25.3.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledbetter M. C., Porter K. R. Morphology of Microtubules of Plant Cell. Science. 1964 May 15;144(3620):872–874. doi: 10.1126/science.144.3620.872. [DOI] [PubMed] [Google Scholar]
- MANGAN J., MIKI-NOUMURA T., GROSS P. R. PROTEIN SYNTHESIS AND THE MITOTIC APPARATUS. Science. 1965 Mar 26;147(3665):1575–1578. doi: 10.1126/science.147.3665.1575. [DOI] [PubMed] [Google Scholar]
- MAZIA D., MITCHISON J. M., MEDINA H., HARRIS P. The direct isolation of the mitotic apparatus. J Biophys Biochem Cytol. 1961 Aug;10:467–474. doi: 10.1083/jcb.10.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malkin L. I., Mangan J., Gross P. R. A crystalline protein of high molecular weight from cytoplasmic granules in sea urchin eggs and embryos. Dev Biol. 1965 Dec;12(3):520–542. doi: 10.1016/0012-1606(65)90013-8. [DOI] [PubMed] [Google Scholar]
- Mazia D., Dan K. The Isolation and Biochemical Characterization of the Mitotic Apparatus of Dividing Cells. Proc Natl Acad Sci U S A. 1952 Sep;38(9):826–838. doi: 10.1073/pnas.38.9.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray R. G., Murray A. S., Pizzo A. The fine structure of mitosis in rat thymic lymphocytes. J Cell Biol. 1965 Aug;26(2):601–619. doi: 10.1083/jcb.26.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTH L. E., DANIELS E. W. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J Cell Biol. 1962 Jan;12:57–78. doi: 10.1083/jcb.12.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANBORN E., KOEN P. F., MACNABB J. D., MOORE G. CYTOPLASMIC MICROTUBULES IN MAMMALIAN CELLS. J Ultrastruct Res. 1964 Aug;11:123–138. doi: 10.1016/s0022-5320(64)80097-6. [DOI] [PubMed] [Google Scholar]
- SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STAFFORD D. W., IVERSON R. M. RADIOAUTOGRAPHIC EVIDENCE FOR THE INCORPORATION OF LEUCINE-CARBON-14 INTO THE MITOTIC APPARATUS. Science. 1964 Feb 7;143(3606):580–581. doi: 10.1126/science.143.3606.580. [DOI] [PubMed] [Google Scholar]
- STEMPAK J. G., WARD R. T. AN IMPROVED STAINING METHOD FOR ELECTRON MICROSCOPY. J Cell Biol. 1964 Sep;22:697–701. doi: 10.1083/jcb.22.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai H. Studies on sulfhydryl groups during cell division of sea-urchin eggs. 8. Some properties of mitotic apparatus proteins. Biochim Biophys Acta. 1966 Jan 4;112(1):132–145. doi: 10.1016/s0926-6585(96)90015-1. [DOI] [PubMed] [Google Scholar]
- Stephens R. E. The mitotic apparatus. Physical chemical characterization of the 22S protein component and its subunits. J Cell Biol. 1967 Feb;32(2):255–275. doi: 10.1083/jcb.32.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WENT H. A. Dynamic aspects of mitotic apparatus protein. Ann N Y Acad Sci. 1960 Oct 7;90:422–429. doi: 10.1111/j.1749-6632.1960.tb23260.x. [DOI] [PubMed] [Google Scholar]
- WENT H. A. Studies on the mitotic apparatus of the sea urchin by means of antigen-antibody reactions in agar. J Biophys Biochem Cytol. 1959 Dec;6:447–455. doi: 10.1083/jcb.6.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]