Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Feb 1;32(2):255–275. doi: 10.1083/jcb.32.2.255

THE MITOTIC APPARATUS

Physical Chemical Characterization of the 22S Protein Component and Its Subunits

R E Stephens 1
PMCID: PMC2107256  PMID: 10976220

Abstract

The major 22S protein of the hexylene glycol-isolated mitotic apparatus has been characterized from spindle isolates and extracts of whole eggs and acetone powders of eggs from the sea urchins Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, and Arbacia punctulata. The protein is free of nucleotide, lipid, and ATPase activity. Essentially identical in amino acid composition, proteins from these species show a relatively high content of glutamic and aspartic acids and are fairly rich in hydrophobic amino acids. Optical rotatory dispersion studies indicate a helical content of about 20%, a value consistent with the proline content of the protein. The purified proteins have sedimentation rates in the range of 22–24S, diffusion constants of 2.4–2.5F, intrinsic viscosities of 3.7–4.3 ml/g, a partial specific volume of 0.74, and an average molecular weight of 880,000. Electron microscopy indicates a globular molecule with dimensions of approximately 150 by 200 A; such size and symmetry are consistent with hydrodynamic measurements. The 22S protein yields 6–7S, 9–10S, and 13–14S subunits below pH 4 or above pH 11. The 13–14S component has an estimated molecular weight of 600,000–700,000. A 5–6S particle is formed in 8 M urea or 5 M guanidine hydrochloride, while at pH 12 the 6–7S subunit is seen; each particle has a molecular weight of 230,000–240,000. In 8 M urea plus 2% mercaptoethanol or at pH 13, the molecular weight becomes 105,000–120,000; under these conditions the particle sediments at 2.5–3S and 4S, respectively. On the basis of these molecular weights, the 6–7S, 9–10S, 13–14S, and the parent 22S particle should be dimer, tetramer, hexamer, and octamer, respectively, of the 105,000–120,000 molecular weight subunit. The various subunits will reform the 22S particle when returned to neutral buffer, with the exception of the mercaptoethanol-treated urea subunit where breakage of disulfide bonds results in a polydisperse aggregate. The 22S particle itself is not susceptible to sulfhydryl reagents, implying either that the disulfide bonds are inaccessible or that they are unnecessary for maintenance of tertiary structure once the 22S particle has formed from subunits.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
  2. CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
  3. DIRKSEN E. R. THE ISOLATION AND CHARACTERIZATION OF ASTERS FROM ARTIFICIALLY ACTIVATED SEA URCHIN EGGS. Exp Cell Res. 1964 Nov;36:256–269. doi: 10.1016/0014-4827(64)90206-x. [DOI] [PubMed] [Google Scholar]
  4. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HALL C. E. Measurement of globular protein molecules by electron microscopy. J Biophys Biochem Cytol. 1960 Jul;7:613–618. doi: 10.1083/jcb.7.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KOMINZ D. R., HOUGH A., SYMONDS P., LAKI K. The amino acid composition of action, myosin, tropomyosin and the meromyosins. Arch Biochem Biophys. 1954 May;50(1):148–159. doi: 10.1016/0003-9861(54)90017-x. [DOI] [PubMed] [Google Scholar]
  7. Kane R. E., Forer A. The mitotic apparatus. Structural changes after isolation. J Cell Biol. 1965 Jun;25(3 Suppl):31–39. doi: 10.1083/jcb.25.3.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kolodny G. M., Roslansky J. D. Optical rotatory dispersion of mitotic apparatus isolated from dividing eggs of Strongylocentrotus drobachiensis. J Mol Biol. 1966 Jan;15(1):381–384. doi: 10.1016/s0022-2836(66)80236-x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MAZIA D., CHAFFEE R. R., IVERSON R. M. Adenosine triphosphatase in the mitotic apparatus. Proc Natl Acad Sci U S A. 1961 Jun 15;47:788–790. doi: 10.1073/pnas.47.6.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MAZIA D., MITCHISON J. M., MEDINA H., HARRIS P. The direct isolation of the mitotic apparatus. J Biophys Biochem Cytol. 1961 Aug;10:467–474. doi: 10.1083/jcb.10.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malkin L. I., Mangan J., Gross P. R. A crystalline protein of high molecular weight from cytoplasmic granules in sea urchin eggs and embryos. Dev Biol. 1965 Dec;12(3):520–542. doi: 10.1016/0012-1606(65)90013-8. [DOI] [PubMed] [Google Scholar]
  13. Mazia D., Dan K. The Isolation and Biochemical Characterization of the Mitotic Apparatus of Dividing Cells. Proc Natl Acad Sci U S A. 1952 Sep;38(9):826–838. doi: 10.1073/pnas.38.9.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McMEEKIN T. L., MARSHALL K. Specific volumes of proteins and the relationship to their amino acid contents. Science. 1952 Aug 8;116(3006):142–143. doi: 10.1126/science.116.3006.142. [DOI] [PubMed] [Google Scholar]
  15. Moffitt W., Yang J. T. THE OPTICAL ROTATORY DISPERSION OF SIMPLE POLYPEPTIDES. I. Proc Natl Acad Sci U S A. 1956 Sep;42(9):596–603. doi: 10.1073/pnas.42.9.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PEASE D. C. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS. J Cell Biol. 1963 Aug;18:313–326. doi: 10.1083/jcb.18.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SUDHOF H., KELLNER H., SCHULTE N. Uber den Eiweisszucker. I. Kritische Betrachtung der kolorimetrischen Kohlenhydrat-bestimmungsmethoden. Hoppe Seylers Z Physiol Chem. 1955 Apr 29;300(1-3):68–81. [PubMed] [Google Scholar]
  18. SZENT-GYORGYI A. G., COHEN C. Role of proline in polypeptide chain configuration of proteins. Science. 1957 Oct 11;126(3276):697–698. doi: 10.1126/science.126.3276.697. [DOI] [PubMed] [Google Scholar]
  19. Sakai H. Studies on sulfhydryl groups during cell division of sea-urchin eggs. 8. Some properties of mitotic apparatus proteins. Biochim Biophys Acta. 1966 Jan 4;112(1):132–145. doi: 10.1016/s0926-6585(96)90015-1. [DOI] [PubMed] [Google Scholar]
  20. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES