Abstract
Tritiated diisopropylfluorophosphate (DFP) was used to phosphorylate acetylcholinesterase (AChase) in the motor end plate of mouse sternomastoid muscle, and its distribution within the end plate was evaluated quantitatively by electron microscope radioautography. With the use of emulsion layers whose sensitivity to tritium had been calibrated, the density of AChase in different components of the end plate was calculated. The AChase was primarily localized (85%) in the junctional fold region. The concentration of AChase there was more than 20,000 active sites per cubic micron of tissue. The resolution of the technique was not sufficient to determine whether there was some AChase in the nerve end bulb; however, if there is any there, the concentration must be less than 10% of that at the junctional fold region.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASHBOLT R. F., RYDON H. N. The action of diisopropyl phosphorofluoridate and other anticholinesterases on amino acids. Biochem J. 1957 Jun;66(2):237–242. doi: 10.1042/bj0660237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BACHMANN L., SALPETER M. M. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE; A QUANTITATIVE EVALUATION. Lab Invest. 1965 Jun;14:1041–1053. [PubMed] [Google Scholar]
- BACHMANN L., SITTE P. Dickenbestimmung nach Tolansky an Ultradünnschnitten. Mikroskopie. 1959 Feb;13(9-10):289–304. [PubMed] [Google Scholar]
- BARNARD E. A., OSTROWSKI K. AUTORADIOGRAPHIC METHODS IN ENZYME CYTOCHEMISTRY. II. STUDIES ON SOME PROPERTIES OF ACETYLCHOLINESTERASE IN ITS SITES AT THE MOTOR END-PLATE. Exp Cell Res. 1964 Oct;36:28–42. doi: 10.1016/0014-4827(64)90157-0. [DOI] [PubMed] [Google Scholar]
- BARRNETT R. J. The fine structural localization of acetylcholinesterase at the myoneural junction. J Cell Biol. 1962 Feb;12:247–262. doi: 10.1083/jcb.12.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN J. A., WARRINGA M. G. Methods to estimate the turnover number of preparations of ox red cell cholinesterase. Biochim Biophys Acta. 1953 May;11(1):52–58. doi: 10.1016/0006-3002(53)90007-9. [DOI] [PubMed] [Google Scholar]
- COUTEAUX R. Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses. Exp Cell Res. 1958;14(Suppl 5):294–322. [PubMed] [Google Scholar]
- HESS A., PILAR G. SLOW FIBRES IN THE EXTRAOCULAR MUSCLES OF THE CAT. J Physiol. 1963 Dec;169:780–798. doi: 10.1113/jphysiol.1963.sp007296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HINTERBUCHNER L. P., NACHMANSOHN D. Electrical activity evoked by a specific chemical reaction. Biochim Biophys Acta. 1960 Nov 18;44:554–560. doi: 10.1016/0006-3002(60)91609-7. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B., FRIEDENWALD J. A. A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med. 1949 Apr;70(4):617–622. doi: 10.3181/00379727-70-17013. [DOI] [PubMed] [Google Scholar]
- LAGUNOFF D., BENDITT E. P. Proteolytic enzymes of mast cells. Ann N Y Acad Sci. 1963 Feb 26;103:185–198. doi: 10.1111/j.1749-6632.1963.tb53698.x. [DOI] [PubMed] [Google Scholar]
- LEHRER G. M., ORNSTEIN L. A diazo coupling method for the electron microscopic localization of cholinesterase. J Biophys Biochem Cytol. 1959 Dec;6:399–406. doi: 10.1083/jcb.6.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILEDI R. ELECTRON-MICROSCOPICAL LOCALIZATION OF PRODUCTS FROM HISTOCHEMICAL REACTIONS USED TO DETECT CHOLINESTERASE IN MUSCLE. Nature. 1964 Oct 17;204:293–295. doi: 10.1038/204293b0. [DOI] [PubMed] [Google Scholar]
- PEACHEY L. D. Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J Biophys Biochem Cytol. 1958 May 25;4(3):233–242. doi: 10.1083/jcb.4.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers A. W., Darzynkiewicz Z., Barnard E. A., Salpeter M. M. Number and location of acetylcholinesterase molecules at motor endplates of the mouse. Nature. 1966 Jun 4;210(5040):1003–1006. doi: 10.1038/2101003a0. [DOI] [PubMed] [Google Scholar]
- SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON I. B., GINSBURG B. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim Biophys Acta. 1955 Sep;18(1):168–170. doi: 10.1016/0006-3002(55)90040-8. [DOI] [PubMed] [Google Scholar]
- WILSON I. B., GINSBURG S., QUAN C. Molecular complementariness as basis for reactivation of alkyl phosphate-inhibited enzyme. Arch Biochem Biophys. 1958 Oct;77(2):286–296. doi: 10.1016/0003-9861(58)90077-8. [DOI] [PubMed] [Google Scholar]
- Waser P. G., Reller J. Bestimmung der Zahl aktiver Zentren der Acetylcholinesterase in motorischen Endplatten. Experientia. 1965 Jul 15;21(7):402–403. doi: 10.1007/BF02139769. [DOI] [PubMed] [Google Scholar]
- ZACKS S. I., BLUMBERG J. M. The histochemical localization of acetylcholinesterase in the fine structure of neuromuscular junctions of mouse and human intercostal muscle. J Histochem Cytochem. 1961 May;9:317–324. doi: 10.1177/9.3.317. [DOI] [PubMed] [Google Scholar]