Abstract
Under suitable conditions rat dorsal root ganglia differentiate and myelinate in culture, providing an organotypic model of the ganglion (8). Mature cultures of this type were irradiated with a 40 kR dose of 184 kvp X-rays and, after daily observation in the living state, were fixed for light and electron microscopy. Within 24 hr after irradiation, numerous Schwann cells investing unmyelinated axons acutely degenerate. The axons thus denuded display little change. Conversely, few ultrastructural changes develop in Schwann cells investing myelinated axons until after the 4th day. During the 4–14 day period, these Schwann cells and their related myelin sheaths undergo progressive deterioration. Associated axons decrease in diameter but are usually maintained. Myelin deterioration begins as a nodal lengthening and then progresses along two different routes. In intact Schwann cells, fragmentation of myelin begins in a pattern reminiscent of Wallerian degeneration, but its slow breakdown thereafter suggests metabolic disturbances in these Schwann cells. The second pattern of myelin deterioration, occurring after complete degeneration of the related Schwann cell, involves unusual configurational changes in the myelin lamellae. Atypical repeating periods are formed by systematic splitting of lamellae at each major dense line with further splitting at the intraperiod line (Type I) or by splitting in the region of every other intraperiod line (Type II); some sheaths display a compact, wavy, inner zone and an abnormally widened lamellar spacing peripherally (Type III). Extensive blebbing of myelin remnants characterizes the final stages of this extracellular myelin degradation. These observations provide the first description of ultrastructural changes produced by ionizing radiation in nerve fascicles in vitro.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRES K. H. ELEKTRONENMIKROSKOPISCHE UNTERSUCHUNGEN UEBER STRUKTURVERAENDERUNGEN AN DEN NERVENFASERN IN RATTENSPINALGANGLIEN NACH BESTRAHLUNG MIT 185 MEV-PROTONEN. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:1–22. [PubMed] [Google Scholar]
- Aleu F. P., Katzman R., Terry R. D. Fine structure and electrolyte analyses of cerebral edema induced by alkyl tin intoxication. J Neuropathol Exp Neurol. 1963 Jul;22(3):403–413. doi: 10.1097/00005072-196307000-00003. [DOI] [PubMed] [Google Scholar]
- BROWNSON R. H., SUTER D. B., DILLER D. A. Acute brain damage induced by low dosage x-irradiation. Neurology. 1963 Mar;13:181–191. doi: 10.1212/wnl.13.3.181. [DOI] [PubMed] [Google Scholar]
- BUNGE M. B., BUNGE R. P., RIS H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol. 1961 May;10:67–94. doi: 10.1083/jcb.10.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUNGE R. P., BUNGE M. B., PETERSON E. R. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD. J Cell Biol. 1965 Feb;24:163–191. doi: 10.1083/jcb.24.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FERNANDEZ-MORAN H., FINEAN J. B. Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol. 1957 Sep 25;3(5):725–748. doi: 10.1083/jcb.3.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINEAN J. B., WOOLF A. L. An electron microscope study of degenerative changes in human cutaneous nerve. J Neuropathol Exp Neurol. 1962 Jan;21:105–115. doi: 10.1097/00005072-196201000-00009. [DOI] [PubMed] [Google Scholar]
- GOLDRING I. P. The effects of x-rays on the growth of spinal ganglia from 6- and 12-day chick embryos in tissue culture. Radiat Res. 1956 Oct;5(4):390–403. [PubMed] [Google Scholar]
- HICKS S. P. Developmental brain metabolism; effects of cortisone, anoxia fluoroacetate, radiation, insulin, and other inhibitors on the embryo, newborn, and adult. AMA Arch Pathol. 1953 Apr;55(4):302–327. [PubMed] [Google Scholar]
- Holtzman E., Novikoff A. B. Lysomes in the rat sciatic nerve following crush. J Cell Biol. 1965 Dec;27(3):651–669. doi: 10.1083/jcb.27.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON A. C., McNABB A. R., ROSSITER R. J. Chemistry of wallerian degeneration; a review of recent studies. Arch Neurol Psychiatry. 1950 Jul;64(1):105–121. doi: 10.1001/archneurpsyc.1950.02310250111010. [DOI] [PubMed] [Google Scholar]
- LAMPERT P., CARPENTER S. ELECTRON MICROSCOPIC STUDIES ON THE VASCULAR PERMEABILITY AND THE MECHANISM OF DEMYELINATION IN EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS. J Neuropathol Exp Neurol. 1965 Jan;24:11–24. doi: 10.1097/00005072-196501000-00002. [DOI] [PubMed] [Google Scholar]
- LEE J. C. Electron microscopy of Wallerian degeneration. J Comp Neurol. 1963 Feb;120:65–79. doi: 10.1002/cne.901200107. [DOI] [PubMed] [Google Scholar]
- NATHANIEL E. J. PEASE DC: DEGENERATIVE CHANGES IN RAT DORSAL ROOTS DURING WALLERIAN DEGENERATION. J Ultrastruct Res. 1963 Dec;52:511–532. doi: 10.1016/s0022-5320(63)80082-9. [DOI] [PubMed] [Google Scholar]
- NATHANIEL E. J., PEASE D. C. REGENERATIVE CHANGES IN RAT DORSAL ROOTS FOLLOWING WALERIAN DEGENERATION. J Ultrastruct Res. 1963 Dec;52:533–549. doi: 10.1016/s0022-5320(63)80083-0. [DOI] [PubMed] [Google Scholar]
- NOBACK C. R., REILLY J. A. Myelin sheath during degeneration and regeneration. II. Histochemistry. J Comp Neurol. 1956 Sep;105(2):333–353. doi: 10.1002/cne.901050208. [DOI] [PubMed] [Google Scholar]
- Novikoff A. B., Quintana N., Villaverde H., Forschirm R. Nucleoside phosphatase and cholinesterase activities in dorsal root ganglia and peripheral nerve. J Cell Biol. 1966 Jun;29(3):525–545. doi: 10.1083/jcb.29.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETERSON E. R., MURRAY M. R. PATTERNS OF PERIPHERAL DEMYELIMINATION IN VITRO. Ann N Y Acad Sci. 1965 Mar 31;122:39–50. [PubMed] [Google Scholar]
- Pick J. The fine structure of sympathetic neurons in x-irradiated frogs. J Cell Biol. 1965 Aug;26(2):335–352. doi: 10.1083/jcb.26.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SATINSKY D., PEPE F. A., LIU C. N. THE NEURILEMMA CELL IN PERIPHERAL NERVE DEGENERATION AND REGENERATION. Exp Neurol. 1964 Jun;9:441–451. doi: 10.1016/0014-4886(64)90052-4. [DOI] [PubMed] [Google Scholar]
- STEINER J. W., MIYAI K., PHILLIPS M. J. ELECTRON MICROSCOPY OF MEMBRANE-PARTICLE ARRAYS IN LIVER CELLS OF ETHIONINE-INTOXICATED RATS. Am J Pathol. 1964 Feb;44:169–214. [PMC free article] [PubMed] [Google Scholar]
- Scheinberg L. C., Taylor J. M., Herzog I., Mandell S. Optic and peripheral nerve response to triethyltin intoxication in the rabbit: biochemical and ultrastructural studies. J Neuropathol Exp Neurol. 1966 Apr;25(2):202–213. doi: 10.1097/00005072-196604000-00002. [DOI] [PubMed] [Google Scholar]
- THOMAS P. K. CHANGES IN THE ENDONEURIAL SHEATHS OF PERIPHERAL MYELINATED NERVE FIBRES DURING WALLERIAN DEGENERATION. J Anat. 1964 Apr;98:175–182. [PMC free article] [PubMed] [Google Scholar]
- WELLER R. O. DIPHTHERITIC NEUROPATHY IN THE CHICKEN: AN ELECTRON-MICROSCOPE STUDY. J Pathol Bacteriol. 1965 Apr;89:591–598. doi: 10.1002/path.1700890218. [DOI] [PubMed] [Google Scholar]
- ZEMAN W., CURTIS H. J., BAKER C. P. Histopathologic effect of high-energy-particle microbeams on the visual cortex of the mouse brain. Radiat Res. 1961 Oct;15:496–514. [PubMed] [Google Scholar]