Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Mar 1;32(3):535–545. doi: 10.1083/jcb.32.3.535

THE SARCOPLASMIC RETICULUM AND ITS ASSOCIATION WITH THE T SYSTEM IN AN INSECT

Martin Hagopian 1, David Spiro 1
PMCID: PMC2107271  PMID: 4166503

Abstract

The fine structure of the sarcoplasmic reticulum and the transverse tubular system of the femoral muscle of the cockroach, Leucophaea maderae, was studied after prefixation in glutaraldehyde, postfixation in osmium tetroxide, and embedding in Epon. The sarcoplasmic reticulum in this muscle reveals features not previously reported. The sarcoplasmic reticulum is abundant, consisting mainly of a fenestrated envelope which surrounds each myofibril at all levels in the sarcomere. This sarcoplasmic reticulum envelope is continuous transversally as well as longitudinally along the myofibrils. Dyadic junctions are formed by a single T system element which contacts the unfenestrated sarcoplasmic reticulum of adjacent myofibrils in an alternating manner at the ends of the A band. At the dyads, regularly spaced thickenings of the sarcoplasmic reticulum membranes bordering the dyadic spaces are noted. These thickenings, however, do not contact the T tubule membrane. Typical dyadic contacts also are seen between the cell surface membrane and sarcoplasmic reticulum. Z line-like material is seen in contact with the membranes of the cell surface and longitudinal branches of the T systems.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANZINI-ARMSTRONG C. FINE STRUCTURE OF SARCOPLASMIC RETICULUM AND TRANVERSE TUBULAR SYSTEM IN MUSCLE FIBERS. Fed Proc. 1964 Sep-Oct;23:887–895. [PubMed] [Google Scholar]
  4. FRANZINI-ARMSTRONG C. PORES IN THE SARCOPLASMIC RETICULUM. J Cell Biol. 1963 Dec;19:637–641. doi: 10.1083/jcb.19.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GIRARDIER L., POLLET M. D'EMONSTRATION DE LA CONTINUIT'E ENTRE L'ESPACE INTERSTITIEL ET LA LUMI'ERE DE CANAUX INTRACELLULAIRES DANS LE MYOCARDE DE RAT. Helv Physiol Pharmacol Acta. 1964;22:C72–C73. [PubMed] [Google Scholar]
  6. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  7. Hagopian M. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J Cell Biol. 1966 Mar;28(3):545–562. doi: 10.1083/jcb.28.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoyle G. Nature of the Excitatory Sarcoplasmic Reticular Junction. Science. 1965 Jul 2;149(3679):70–72. doi: 10.1126/science.149.3679.70-a. [DOI] [PubMed] [Google Scholar]
  9. MACRAE E. K. OBSERVATIONS ON THE FINE STRUCTURE OF PHARYNGEAL MUSCLE IN THE PLANARIAN DUGESIA TIGRINA. J Cell Biol. 1963 Sep;18:651–662. doi: 10.1083/jcb.18.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PORTER K. R. The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):163–170. doi: 10.1083/jcb.2.4.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  12. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenbluth J. Ultrastructural organization of obliquely striated muscle fibers in Ascaris lumbricoides. J Cell Biol. 1965 Jun;25(3):495–515. doi: 10.1083/jcb.25.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SMITH D. S. The organization of the flight muscle in a dragonfly, Aeshna sp. (Odonata). J Biophys Biochem Cytol. 1961 Oct;11:119–145. doi: 10.1083/jcb.11.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith D. S. The organization of flight muscle fibers in the Odonata. J Cell Biol. 1966 Jan;28(1):109–126. doi: 10.1083/jcb.28.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WIENER J., SPIRO D., LOEWENSTEIN W. R. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. J Cell Biol. 1964 Sep;22:587–598. doi: 10.1083/jcb.22.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker S. M., Schrodt G. R. Membrane-like structures within the sarcoplasmic reticulum. Nature. 1965 Apr 10;206(980):150–154. doi: 10.1038/206150a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES