Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Apr 1;33(1):27–42. doi: 10.1083/jcb.33.1.27

BIOSYNTHESIS OF COLLAGEN

Biochemical and Physicochemical Characterization of Collagen-Synthesizing Polyribosomes

F Fernández-Madrid 1
PMCID: PMC2107296  PMID: 4291867

Abstract

Synthesis of collagen on polyribosomes has been demonstrated in vitro in chick embryo corium by radioisotope incorporation, zone centrifugation through sucrose gradients, and analytical ultracentrifugation. Collagen synthesis was associated with polyribosomes ranging in size, as reflected by their sedimentation constants, from about 180S to approximately 1600S. Most of the newly formed collagen, hydroxyproline, was present on the largest polyribosome aggregates (∼ 350–1600S), but small polyribosomes (∼180–200S) also contained collagen. On the basis of the proline-14C/hydroxyproline-14C ratios and the disrupting effect of collagenase, the proposal is made that the 350–1600S polyribosomes from this tissue are involved predominantly in collagen synthesis. The large polyribosomes are disrupted extensively by collagenase but only partially by ribonuclease and trypsin. Therefore, it appears that they are stabilized by the interaction of newly forming collagen chains. Evidence is presented consistent with the hypothesis that these large polyribosomes are formed by the aggregation of small polyribosomes (180–200S) through the interaction of collagen polypeptides. It is suggested that these small polyribosomes might be involved in the synthesis of subunits of the collagen alpha chain.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britten R. J., Roberts R. B. High-Resolution Density Gradient Sedimentation Analysis. Science. 1960 Jan 1;131(3392):32–33. doi: 10.1126/science.131.3392.32. [DOI] [PubMed] [Google Scholar]
  2. CUMMINGS D. J., KOZLOFF L. M. Biophysical properties of bacteriophage T2. Biochim Biophys Acta. 1960 Nov 18;44:445–458. doi: 10.1016/0006-3002(60)91599-7. [DOI] [PubMed] [Google Scholar]
  3. ELSON D., TAL M. Biochemical differences in ribonucleo-proteins. Biochim Biophys Acta. 1959 Nov;36:281–282. doi: 10.1016/0006-3002(59)90107-6. [DOI] [PubMed] [Google Scholar]
  4. GALLOP P. M. CONCERNING SOME SPECIAL STRUCTURAL FEATURES OF THE COLLAGEN MOLECULE. Biophys J. 1964 Jan;4:SUPPL79–SUPPL92. doi: 10.1016/s0006-3495(64)86929-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GALLOP P. M., SEIFTER S., MEILMAN E. The solubility and properties of a purified ichthyocol in salt solutions of neutral pH. J Biophys Biochem Cytol. 1957 Jul 25;3(4):545–557. doi: 10.1083/jcb.3.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIERER A. Function of aggregated reticulocyte ribosomes in protein synthesis. J Mol Biol. 1963 Feb;6:148–157. doi: 10.1016/s0022-2836(63)80131-x. [DOI] [PubMed] [Google Scholar]
  7. GILBERT W. Polypeptide synthesis in Escherichia coli. I. Ribosomes and the active complex. J Mol Biol. 1963 May;6:374–388. doi: 10.1016/s0022-2836(63)80050-9. [DOI] [PubMed] [Google Scholar]
  8. HAUSMANN E., NEUMAN W. F. Conversion of proline to hydroxyproline and its incorporation into collagen. J Biol Chem. 1961 Jan;236:149–152. [PubMed] [Google Scholar]
  9. HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
  10. KIHO Y., RICH A. INDUCED ENZYME FORMED ON BACTERIAL POLYRIBOSOMES. Proc Natl Acad Sci U S A. 1964 Jan;51:111–118. doi: 10.1073/pnas.51.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KRETSINGER R. H., MANNER G., GOULD B. S., RICH A. SYNTHESIS OF COLLAGEN ON POLYRIBOSOMES. Nature. 1964 May 2;202:438–441. doi: 10.1038/202438a0. [DOI] [PubMed] [Google Scholar]
  12. LOWTHER D. A., GREEN N. M., CHAPMAN J. A. Morphological and chemical studies of collagen formation. II. Metabolic activity of collagen associated with subcellular fractions of guinea pig granulomata. J Biophys Biochem Cytol. 1961 Jul;10:373–388. doi: 10.1083/jcb.10.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MALT R. A., SPEAKMAN P. T. RIBOSOMAL AGGREGATES ASSOCIATED WITH THE PRODUCTION OF COLLAGEN. Life Sci. 1964 Feb;3:81–84. doi: 10.1016/0024-3205(64)90183-3. [DOI] [PubMed] [Google Scholar]
  14. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  15. MYHILL D., JACKSON D. S. SEPARATION OF PROLINE AND HYDROXYPROLINE USING THIN-LAYER CHROMATOGRAPHY. Anal Biochem. 1963 Aug;6:193–198. doi: 10.1016/0003-2697(63)90110-6. [DOI] [PubMed] [Google Scholar]
  16. Marks P. A., Burka E. R., Schlessinger D. PROTEIN SYNTHESIS IN ERYTHROID CELLS, I. RETICULOCYTE RIBOSOMES ACTIVE IN STIMULATING AMINO ACID INCORPORATION. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2163–2171. doi: 10.1073/pnas.48.12.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noble N. L., Boucek R. J. Incorporation of sulphate by chick-embryo corium. Nature and products of the process in vitro. Biochem J. 1965 Nov;97(2):432–439. doi: 10.1042/bj0970432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PETRUSKA J. A., HODGE A. J. A SUBUNIT MODEL FOR THE TROPOCOLLAGEN MACROMOLECULE. Proc Natl Acad Sci U S A. 1964 May;51:871–876. doi: 10.1073/pnas.51.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PIEZ K. A., LEWIS M. S., MARTIN G. R., GROSS J. Subunits of the collagen molecule. Biochim Biophys Acta. 1961 Nov 11;53:596–598. doi: 10.1016/0006-3002(61)90226-8. [DOI] [PubMed] [Google Scholar]
  20. RISEBROUGH R. W., TISSIERES A., WATSON J. D. Messenger-RNA attachment to active ribosomes. Proc Natl Acad Sci U S A. 1962 Mar 15;48:430–436. doi: 10.1073/pnas.48.3.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ROBERTSON W. V. METABOLISM OF COLLAGEN IN MAMMALIAN TISSUES. Biophys J. 1964 Jan;4:SUPPL93–SUPP114. doi: 10.1016/s0006-3495(64)86930-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SCHLESINGER M. J., LEVINTHAL C. Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J Mol Biol. 1963 Jul;7:1–12. doi: 10.1016/s0022-2836(63)80014-5. [DOI] [PubMed] [Google Scholar]
  23. STAFFORD D. W., SOFER W. H., IVERSON R. M. DEMONSTRATION OF POLYRIBOSOMES AFTER FERTILIZATION OF THE SEA URCHIN EGG. Proc Natl Acad Sci U S A. 1964 Aug;52:313–316. doi: 10.1073/pnas.52.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STONE N., MEISTER A. Function of ascorbic acid in the conversion of proline to collagen hydroxyproline. Nature. 1962 May 12;194:555–557. doi: 10.1038/194555a0. [DOI] [PubMed] [Google Scholar]
  25. WALLER J. P. FRACTIONATION OF THE RIBOSOMAL PROTEIN FROM ESCHERICHIA COLI. J Mol Biol. 1964 Nov;10:319–336. doi: 10.1016/s0022-2836(64)80050-4. [DOI] [PubMed] [Google Scholar]
  26. WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]
  28. WOESSNER J. F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440–447. doi: 10.1016/0003-9861(61)90291-0. [DOI] [PubMed] [Google Scholar]
  29. Warner J. R., Rich A., Hall C. E. Electron Microscope Studies of Ribosomal Clusters Synthesizing Hemoglobin. Science. 1962 Dec 28;138(3548):1399–1403. doi: 10.1126/science.138.3548.1399. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES