Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Apr 1;33(1):103–129. doi: 10.1083/jcb.33.1.103

A STRAND OF CARDIAC MUSCLE

Its Ultrastructure and the Electrophysiological Implications of Its Geometry

Edward A Johnson 1, Joachim R Sommer 1
PMCID: PMC2107301  PMID: 6033930

Abstract

The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLUM J. J. OBSERVATIONS ON THE ACID PHOSPHATASES OF EUGLENA GRACILIS. J Cell Biol. 1965 Feb;24:223–234. doi: 10.1083/jcb.24.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRIGHTMAN M. W., PALAY S. L. THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT. J Cell Biol. 1963 Nov;19:415–439. doi: 10.1083/jcb.19.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandt P. W., Reuben J. P., Girardier L., Grundfest H. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J Cell Biol. 1965 Jun;25(3 Suppl):233–260. doi: 10.1083/jcb.25.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAESAR R., EDWARDS G. A., RUSKA H. Electron microscopy of the impulse conducting system of the sheep heart. Z Zellforsch Mikrosk Anat. 1958;48(6):698–719. doi: 10.1007/BF00398655. [DOI] [PubMed] [Google Scholar]
  5. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ESSNER E., NOVIKOFF A. B., QUINTANA N. NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE. J Cell Biol. 1965 May;25:201–215. doi: 10.1083/jcb.25.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fozzard H. A. Membrane capacity of the cardiac Purkinje fibre. J Physiol. 1966 Jan;182(2):255–267. doi: 10.1113/jphysiol.1966.sp007823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gauthier G. F., Padykula H. A. Cytochemical studies of adenosine triphosphatase activity in the sarcoplasmic reticulum. J Cell Biol. 1965 Oct;27(1):252–260. doi: 10.1083/jcb.27.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grillo M. A. Electron microscopy of sympathetic tissues. Pharmacol Rev. 1966 Mar;18(1):387–399. [PubMed] [Google Scholar]
  13. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  15. Hess A. The sarcoplasmic reticulum, the T system, and the motor terminals of slow and twitch muscle fibers in the garter snake. J Cell Biol. 1965 Aug;26(2):467–476. doi: 10.1083/jcb.26.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ISHIKAWA H. THE FINE STRUCTURE OF MYO-TENDON JUNCTION IN SOME MAMMALIAN SKELETAL MUSCLES. Arch Histol Jpn. 1965 Feb;25:275–296. doi: 10.1679/aohc1950.25.275. [DOI] [PubMed] [Google Scholar]
  17. KAWAMURA K. Electron microscope studies on the cardiac conduction system of the dog. I. The Purkinje fibers. Jpn Circ J. 1961 Jun;25:594–616. doi: 10.1253/jcj.25.594. [DOI] [PubMed] [Google Scholar]
  18. MUIR A. R. Observations on the fine structure of the Purkinje fibres in the ventricles of the sheep's heart. J Anat. 1957 Apr;91(2):251–258. [PMC free article] [PubMed] [Google Scholar]
  19. MUSCATELLO U., ANDERSSON-CEDERGREN E., AZZONE G. F. The mechanism of muscle-fiber relaxation adenosine triphosphatase and relaxing activity of the sarcotubular system. Biochim Biophys Acta. 1962 Sep 10;63:55–74. doi: 10.1016/0006-3002(62)90338-4. [DOI] [PubMed] [Google Scholar]
  20. NOBLE D. The voltage dependence of the cardiac membrane conductance. Biophys J. 1962 Sep;2:381–393. doi: 10.1016/s0006-3495(62)86862-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
  22. PEACHEY L. D., HUXLEY A. F. Structural identification of twitch and slow striated muscle fibers of the frog. J Cell Biol. 1962 Apr;13:177–180. doi: 10.1083/jcb.13.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Page S. G. A comparison of the fine structures of frog slow and twitch muscle fibers. J Cell Biol. 1965 Aug;26(2):477–497. doi: 10.1083/jcb.26.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  25. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  28. RUSKA H., EDWARDS G. A. A new cytoplasmic pattern in striated muscle fibers and its possible relation to growth. Growth. 1957 Jun;21(2):73–88. [PubMed] [Google Scholar]
  29. Rosenbluth J. Ultrastructure of somatic muscle cells in Ascaris lumbricoides. II. Intermuscular junctions, neuromuscular junctions, and glycogen stores. J Cell Biol. 1965 Aug;26(2):579–591. doi: 10.1083/jcb.26.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rostgaard J., Behnke O. Fine structural localization of adenine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T system of rat myocardium. J Ultrastruct Res. 1965 Jun;12(5):579–591. doi: 10.1016/s0022-5320(65)80049-1. [DOI] [PubMed] [Google Scholar]
  31. SOMMER J. R., SPACH M. S. ELECTRON MICROSCOPIC DEMONSTRATION OF ADENOSINETRIPHOSPHATASE IN MYOFIBRILS AND SARCOPLASMIC MEMBRANES OF CARDIAC MUSCLE OF NORMAL AND ABNORMAL DOGS. Am J Pathol. 1964 Mar;44:491–505. [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. S. The organization of flight muscle in an aphid, Megoura viciae (Homoptera). With a discussion on the structure of synchronous and asynchronous striated muscle fibers. J Cell Biol. 1965 Nov;27(2):379–393. doi: 10.1083/jcb.27.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sommer J. R., Blum J. J. Cell division in Astasia longa. Exp Cell Res. 1965 Sep;39(2):504–527. doi: 10.1016/0014-4827(65)90054-6. [DOI] [PubMed] [Google Scholar]
  34. VIRAGH S., PORTE A. [Fine structure of vector tissue in the rat heart]. Z Zellforsch Mikrosk Anat. 1961;55:263–281. [PubMed] [Google Scholar]
  35. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WIENER J., SPIRO D., LOEWENSTEIN W. R. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. II. SURFACE STRUCTURE. J Cell Biol. 1964 Sep;22:587–598. doi: 10.1083/jcb.22.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zebe E. Zur Lokalisation ATP-spaltender Reaktionen im "sarcoplasmatischen Reticulum" quergestreifter Muskeln. Histochemie. 1965 May 20;5(1):32–43. doi: 10.1007/BF00307890. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES