Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Aug 1;34(2):489–503. doi: 10.1083/jcb.34.2.489

THE LOSS OF KINETOPLASTIC DNA IN TWO SPECIES OF TRYPANOSOMATIDAE TREATED WITH ACRIFLAVINE

M Steinert 1, Suzanne van Assel 1
PMCID: PMC2107302  PMID: 6040538

Abstract

The effects of acriflavine on two species of Trypanosomatidae, Crithidia luciliae and Trypanosoma mega, have been investigated. It has been observed that kinetoplastic (i.e. mitochondrial) DNA is lost in a high percentage of acriflavine-treated cells. Resting flagellates, from stationary-phase or hemin-deficient cultures, are considerably more resistant to the acridine than are flagellates from a log-phase culture. When the kinetoplast has retained some DNA and still remains visible in stained smears, it appears reduced in size, and its ultrastructure is extremely abnormal: the DNA fibrils, clearly visible in normal kinetoplasts, are condensed; they appear as an electron-opaque, apparently homogeneous mass, separated from the membranes by a space of low electron-opacity. Analyses of DNA extracts, with high speed centrifugation in CsCl density gradients, revealed that the satellite band, presumably kinetoplastic DNA, is lost by trypanosomes grown for 5 days in the presence of acriflavine. Radioautography was used to study the effects of acriflavine on thymidine-3H incorporation in C. luciliae. At the concentration which affects the kinetoplast specifically, the dye produces an 87% inhibition of thymidine incorporation in this organelle. The kinetics of this inhibition suggest a direct effect on replication. No decrease in incorporation occurs in the nucleus. These results lead to the conclusion that loss of kinetoplastic DNA is due to continued growth and cell division in the absence of kinetoplastic DNA replication. Several hypotheses are discussed concerning the specificity of the dye's action upon the replication of extrachromosomal DNA.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONE G. J., STEINERT M. Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature. 1956 Aug 11;178(4528):308–309. doi: 10.1038/178308a0. [DOI] [PubMed] [Google Scholar]
  2. DUBUY H. G., MATTERN C. F., RILEY F. L. ISOLATION AND CHARACTERIZATION OF DNA FROM KINETOPLASTS OF LEISHMANIA ENRIETTII. Science. 1965 Feb 12;147(3659):754–756. doi: 10.1126/science.147.3659.754. [DOI] [PubMed] [Google Scholar]
  3. Du Buy H. G., Mattern C. F., Riley F. L. Comparison of the DNA's obtained from brain nuclei and mitochondria of mice and from the nuclei and kinetoplasts of Leishmania enriettii. Biochim Biophys Acta. 1966 Aug 17;123(2):298–305. doi: 10.1016/0005-2787(66)90282-6. [DOI] [PubMed] [Google Scholar]
  4. GIBOR A., GRANICK S. PLASTIDS AND MITOCHONDRIA: INHERITABLE SYSTEMS. Science. 1964 Aug 14;145(3633):890–897. doi: 10.1126/science.145.3635.890. [DOI] [PubMed] [Google Scholar]
  5. GRANT P. T., SARGENT J. R. Properties of L-alpha-glycerophosphate oxidase and its role in the respiration of Trypanosoma rhodesiense. Biochem J. 1960 Aug;76:229–237. doi: 10.1042/bj0760229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRANT P. T., SARGENT J. R., RYLEY J. F. Respiratory systems in the Trypanosomidae. Biochem J. 1961 Oct;81:200–206. doi: 10.1042/bj0810200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guttman H. N., Eisenman R. N. Acriflavin-induced loss of kinetoplast deoxyribonucleic acid in Crithidia fasciculata (Culex pipiens strain). Nature. 1965 Sep 18;207(5003):1280–1281. doi: 10.1038/2071280a0. [DOI] [PubMed] [Google Scholar]
  8. Krassner S. M. Cytochromes, lactic dehydrogenase and transformation in Leishmania. J Protozool. 1966 May;13(2):286–290. [PubMed] [Google Scholar]
  9. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  10. LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MARMUR J., ROWND R., FALKOW S., BARON L. S., SCHILDKRAUT C., DOTY P. The nature of intergeneric episomal infection. Proc Natl Acad Sci U S A. 1961 Jul 15;47:972–979. doi: 10.1073/pnas.47.7.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RAY D. S., HANAWALT P. C. PROPERTIES OF THE SATELLITE DNA ASSOCIATED WITH THE CHLOROPLASTS OF EUGLENA GRACILIS. J Mol Biol. 1964 Sep;9:812–824. doi: 10.1016/s0022-2836(64)80187-x. [DOI] [PubMed] [Google Scholar]
  13. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  15. Riou G., Pautrizel R., Paoletti C. Fractionnement et caractérisation de l'acide désoxyribonucléique (DNA) de trypanosome (Trypanosoma equiperdum) C R Acad Sci Hebd Seances Acad Sci D. 1966 Jun 1;262(22):2376–2379. [PubMed] [Google Scholar]
  16. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  17. STEINERT G., FIRKET H., STEINERT M. Synthèse d'acide désoxyribonucléique dans le corps parabasal de Trypanosoma mega. Exp Cell Res. 1958 Dec;15(3):632–635. doi: 10.1016/0014-4827(58)90117-4. [DOI] [PubMed] [Google Scholar]
  18. STEINERT M. LE CHONDRIOME DE TRYPANOSOMA MEGA. OBSERVATIONS IN VIVO ET PAR LA R'EACTION CYTOCHIMIQUE DE LA NADH-DIAPHORASE. J Cell Biol. 1964 Jan;20:192–197. [PMC free article] [PubMed] [Google Scholar]
  19. STEINERT M., STEINERT G. [Inhibition of the synthesis of desoxyribonucleic acid of Trypanosoma mega by urea in low concentration]. Exp Cell Res. 1960 Mar;19:421–424. doi: 10.1016/0014-4827(60)90024-0. [DOI] [PubMed] [Google Scholar]
  20. STEINERT M., STEINERT G. [The synthesis of desoxyri-bonucleic acid during the division cycle of Trypanosoma mega]. J Protozool. 1962 May;9:203–211. doi: 10.1111/j.1550-7408.1962.tb02607.x. [DOI] [PubMed] [Google Scholar]
  21. Steinert M. L'absence d'histone dans le kinétonucléus des trypanosomes. Etude cytochimique. Exp Cell Res. 1965 Aug;39(1):69–73. doi: 10.1016/0014-4827(65)90008-x. [DOI] [PubMed] [Google Scholar]
  22. TRAGER W., RUDZINSKA M. A. THE RIBOFLAVIN REQUIREMENT AND THE EFFECTS OF ACRIFLAVIN ON THE FINE STRUCTURE OF THE KINETOPLAST OF LEISHMANIA TARENTOLAE. J Protozool. 1964 Feb;11:133–145. doi: 10.1111/j.1550-7408.1964.tb01734.x. [DOI] [PubMed] [Google Scholar]
  23. TUBBS R. K., DITMARS W. E., Jr, VANWINKLE Q. HETEROGENEITY OF THE INTERACTION OF DNA WITH ACRIFLAVINE. J Mol Biol. 1964 Aug;9:545–557. doi: 10.1016/s0022-2836(64)80226-6. [DOI] [PubMed] [Google Scholar]
  24. VICKERMAN K. The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei sub-group: an hypothesis based on ultrastructural observations. Trans R Soc Trop Med Hyg. 1962 Nov;56:487–495. doi: 10.1016/0035-9203(62)90072-x. [DOI] [PubMed] [Google Scholar]
  25. Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965 Nov 20;208(5012):762–766. doi: 10.1038/208762a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES