Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Aug 1;34(2):577–596. doi: 10.1083/jcb.34.2.577

INTRACELLULAR TRANSPORT OF SECRETORY PROTEINS IN THE PANCREATIC EXOCRINE CELL

I. Role of the Peripheral Elements of the Golgi Complex

James D Jamieson 1, George E Palade 1
PMCID: PMC2107305  PMID: 6035647

Abstract

It has been established by electron microscopic radioautography of guinea pig pancreatic exocrine cells (Caro and Palade, 1964) that secretory proteins are transported from the elements of the rough-surfaced endoplasmic reticulum (ER) to condensing vacuoles of the Golgi complex possibly via small vesicles located in the periphery of the complex. To define more clearly the role of these vesicles in the intracellular transport of secretory proteins, we have investigated the secretory cycle of the guinea pig pancreas by cell fractionation procedures applied to pancreatic slices incubated in vitro. Such slices remain viable for 3 hr and incur minimal structural damage in this time. Their secretory proteins can be labeled with radioactive amino acids in short, well defined pulses which, followed by cell fractionation, makes possible a kinetic analysis of transport. To determine the kinetics of transport, we pulse-labeled sets of slices for 3 min with leucine-14C and incubated them for further +7, +17, and +57 min in chase medium. At each time, smooth microsomes ( = peripheral elements of the Golgi complex) and rough microsomes ( = elements of the rough ER) were isolated from the slices by density gradient centrifugation of the total microsomal fraction. Labeled proteins appeared initially (end of pulse) in the rough microsomes and were subsequently transferred during incubation in chase medium to the smooth microsomes, reaching a maximal concentration in this fraction after +7 min chase incubation. Later, labeled proteins left the smooth microsomes to appear in the zymogen granule fraction. These data provide direct evidence that secretory proteins are transported from the cisternae of the rough ER to condensing vacuoles via the small vesicles of the Golgi complex.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  5. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GREENE L. J., HIRS C. H., PALADE G. E. On the protein composition of bovine pancreatic zymogen granules. J Biol Chem. 1963 Jun;238:2054–2070. [PubMed] [Google Scholar]
  7. HOKIN L. E. The synthesis and secretion of amylase by pigeon pancreas in vitro. Biochem J. 1951 Mar;48(3):320–326. doi: 10.1042/bj0480320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HRUBAN Z., SWIFT H., WISSLER R. W. Analog-induced inclusions in pancreatic acinar cells. J Ultrastruct Res. 1962 Oct;7:273–285. doi: 10.1016/s0022-5320(62)90023-0. [DOI] [PubMed] [Google Scholar]
  9. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  10. LAIRD A. K., BARTON A. D. Protein synthesis in rat pancreas. II. Changes in the intracelluar distribution of pancreatic amylase during the secretory cycle. Biochim Biophys Acta. 1958 Jan;27(1):12–15. doi: 10.1016/0006-3002(58)90287-7. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MORRIS A. J., DICKMAN S. R. Biosynthesis of ribonuclease in mouse pancreas. J Biol Chem. 1960 May;235:1404–1408. [PubMed] [Google Scholar]
  13. PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. REDMAN C. M., HOKIN L. E. Phospholipide turnover in microsomal membranes of the pancreas during enzyme secretion. J Biophys Biochem Cytol. 1959 Oct;6:207–214. doi: 10.1083/jcb.6.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  17. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Redman C. M., Siekevitz P., Palade G. E. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J Biol Chem. 1966 Mar 10;241(5):1150–1158. [PubMed] [Google Scholar]
  19. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. VAN LANCKER J. L., HOLTZER R. L. Tissue fractionation studies of mouse pancreas; intracellular distribution of nitrogen, deoxyribonucleic acid, ribonucleic acid, amylase, acid phosphatase, deoxyribonuclease, and cytochrome oxidase. J Biol Chem. 1959 Sep;234:2359–2363. [PubMed] [Google Scholar]
  21. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WARSHAWSKY H., LEBLOND C. P., DROZ B. Synthesis and migration of proteins in the cells of the exocrine pancreas as revealed by specific activity determination from radioautographs. J Cell Biol. 1963 Jan;16:1–24. doi: 10.1083/jcb.16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES