Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1967 Aug 1;34(2):597–615. doi: 10.1083/jcb.34.2.597

INTRACELLULAR TRANSPORT OF SECRETORY PROTEINS IN THE PANCREATIC EXOCRINE CELL

II. Transport to Condensing Vacuoles and Zymogen Granules

James D Jamieson 1, George E Palade 1
PMCID: PMC2107311  PMID: 6035648

Abstract

In the previous paper we described an in vitro system of guinea pig pancreatic slices whose secretory proteins can be pulse-labeled with radioactive amino acids. From kinetic experiments performed on smooth and rough microsomes isolated by gradient centrifugation from such slices, we obtained direct evidence that secretory proteins are transported from the cisternae of the rough endoplasmic reticulum to condensing vacuoles of the Golgi complex via small vesicles located in the periphery of the complex. Since condensing vacuoles ultimately become zymogen granules, it was of interest to study this phase of the secretory cycle in pulse-labeled slices. To this intent, a zymogen granule fraction was isolated by differential centrifugation from slices at the end of a 3-min pulse with leucine-14C and after varying times of incubation in chase medium. At the end of the pulse, few radioactive proteins were found in this fraction; after +17 min in chaser, its proteins were half maximally labeled; they became maximally labeled between +37 and +57 min. Parallel electron microscopic radioautography of intact cells in slices pulse labeled with leucine-3H showed, however, that zymogen granules become labeled, at the earliest, +57 min post-pulse. We assumed that the discrepancy between the two sets of results was due to the presence of rapidly labeled condensing vacuoles in the zymogen granule fraction. To test this assumption, electron microscopic radioautography was performed on sections of zymogen granule pellets isolated from slices pulse labeled with leucine-3H and subsequently incubated in chaser. The results showed that the early labeling of the zymogen granule fractions was, indeed, due to the presence of highly labeled condensing vacuoles among the components of these fractions.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton D. F., Farquhar M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966 Feb;28(2):277–301. doi: 10.1083/jcb.28.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fedorko M. E., Hirsch J. G. Cytoplasmic granule formation in myelocytes. An electron microscope radioautographic study on the mechanism of formation of cytoplasmic granules in rabbit heterophilic myelocytes. J Cell Biol. 1966 May;29(2):307–316. doi: 10.1083/jcb.29.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GREENE L. J., HIRS C. H., PALADE G. E. On the protein composition of bovine pancreatic zymogen granules. J Biol Chem. 1963 Jun;238:2054–2070. [PubMed] [Google Scholar]
  6. JENNINGS B. M., FARQUHAR M. G., MOON H. D. Staining methods for osmium-methacrylate sections. Am J Pathol. 1959 Sep-Oct;35:991–997. [PMC free article] [PubMed] [Google Scholar]
  7. JUNQUEIRA L. C., HIRSCH G. C., ROTHSCHILD H. A. Glycine uptake by the proteins of the rat pancreatic juice. Biochem J. 1955 Oct;61(2):275–278. doi: 10.1042/bj0610275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J Cell Biol. 1967 Aug;34(2):577–596. doi: 10.1083/jcb.34.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jamieson J. D., Palade G. E. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc Natl Acad Sci U S A. 1966 Feb;55(2):424–431. doi: 10.1073/pnas.55.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KELLER P. J., COHEN E. Enzymic composition of some cell fractions of bovine pancrease. J Biol Chem. 1961 May;236:1407–1413. [PubMed] [Google Scholar]
  11. LAIRD A. K., BARTON A. D. Protein synthesis in rat pancreas. II. Changes in the intracelluar distribution of pancreatic amylase during the secretory cycle. Biochim Biophys Acta. 1958 Jan;27(1):12–15. doi: 10.1016/0006-3002(58)90287-7. [DOI] [PubMed] [Google Scholar]
  12. MORRIS A. J., DICKMAN S. R. Biosynthesis of ribonuclease in mouse pancreas. J Biol Chem. 1960 May;235:1404–1408. [PubMed] [Google Scholar]
  13. PARKS H. F. Morphological study of the extrusion of secretory materials by the parotid glands of mouse and rat. J Ultrastruct Res. 1962 Jun;6:449–465. doi: 10.1016/s0022-5320(62)80002-1. [DOI] [PubMed] [Google Scholar]
  14. PARKS H. F. On the fine structure of the parotid gland of mouse and rat. Am J Anat. 1961 May;108:303–329. doi: 10.1002/aja.1001080306. [DOI] [PubMed] [Google Scholar]
  15. REDMAN C. M., HOKIN L. E. Phospholipide turnover in microsomal membranes of the pancreas during enzyme secretion. J Biophys Biochem Cytol. 1959 Oct;6:207–214. doi: 10.1083/jcb.6.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. REVEL J. P., HAY E. D. AN AUTORADIOGRAPHIC AND ELECTRON MICROSCOPIC STUDY OF COLLAGEN SYNTHESIS IN DIFFERENTIATING CARTILAGE. Z Zellforsch Mikrosk Anat. 1963 Oct 8;61:110–144. doi: 10.1007/BF00341524. [DOI] [PubMed] [Google Scholar]
  17. RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
  18. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Redman C. M., Siekevitz P., Palade G. E. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J Biol Chem. 1966 Mar 10;241(5):1150–1158. [PubMed] [Google Scholar]
  20. Ross R., Benditt E. P. Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline-H3 utilization by fibroblasts. J Cell Biol. 1965 Oct;27(1):83–106. doi: 10.1083/jcb.27.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHRAMM M., BDOLAH A. THE MECHANISM OF ENZYME SECRETION BY THE CELL. III. INTERMEDIATE STAGES IN AMYLASE TRANSPORT AS REVEALED BY PULSE LABELING OF SLICES OF PAROTID GLAND. Arch Biochem Biophys. 1964 Jan;104:67–72. doi: 10.1016/s0003-9861(64)80035-7. [DOI] [PubMed] [Google Scholar]
  22. SIEKEVITZ P., PALADE G. E. A cyto-chemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J Biophys Biochem Cytol. 1958 Sep 25;4(5):557–566. doi: 10.1083/jcb.4.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J Biophys Biochem Cytol. 1958 Mar 25;4(2):203–218. doi: 10.1083/jcb.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. STRAUB F. B. Formation of amylase in the pancreas. Symp Soc Exp Biol. 1958;12:176–184. [PubMed] [Google Scholar]
  26. VAN LANCKER J. L., HOLTZER R. L. Tissue fractionation studies of mouse pancreas; intracellular distribution of nitrogen, deoxyribonucleic acid, ribonucleic acid, amylase, acid phosphatase, deoxyribonuclease, and cytochrome oxidase. J Biol Chem. 1959 Sep;234:2359–2363. [PubMed] [Google Scholar]
  27. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WARSHAWSKY H., LEBLOND C. P., DROZ B. Synthesis and migration of proteins in the cells of the exocrine pancreas as revealed by specific activity determination from radioautographs. J Cell Biol. 1963 Jan;16:1–24. doi: 10.1083/jcb.16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WELLINGS S. R., PHILP J. R. THE FUNCTION OF THE GOLGI APPARATUS IN LACTATING CELLS OF THE BALB/CCRGL MOUSE. AN ELECTRON MICROSCOPIC AND AUTORADIOGRAPHIC STUDY. Z Zellforsch Mikrosk Anat. 1964 Jan 31;61:871–882. doi: 10.1007/BF00340040. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES