Abstract
The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2% osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the presence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in advance of chromosome alignment, become more numerous and precisely aligned by metaphase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 µ, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained structurally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAM D., KOFFLER H. IN VITRO FORMATION OF FLAGELLA-LIKE FILAMENTS AND OTHER STRUCTURES FROM FLAGELLIN. J Mol Biol. 1964 Jul;9:168–185. doi: 10.1016/s0022-2836(64)80098-x. [DOI] [PubMed] [Google Scholar]
- Dembitzer H. M., Hirshfield H. I. Some new cytological observations in the heterotrichous ciliate, blepharisma. J Cell Biol. 1966 Jul;30(1):201–207. doi: 10.1083/jcb.30.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLIOTT A. M., KENNEDY J. R., Jr, BAK I. J. Macronuclear events in synchronously dividing Tetrahymena pyriformis. J Cell Biol. 1962 Mar;12:515–531. doi: 10.1083/jcb.12.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flickinger C. J. The fine structure of the nuclei of Tetrahymena pyriformis throughout the cell cycle. J Cell Biol. 1965 Dec;27(3):519–529. doi: 10.1083/jcb.27.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Chemical dissection of cilia. Arch Biol (Liege) 1965;76(2):317–352. [PubMed] [Google Scholar]
- Inaba F., Suganuma Y. Electron microscopy of the nuclear apparatus of Urostyla grandis, a hypotrichous ciliate. J Protozool. 1966 Feb;13(1):137–143. doi: 10.1111/j.1550-7408.1966.tb01884.x. [DOI] [PubMed] [Google Scholar]
- JURAND A., BEALE G. H., YOUNG M. R. Studies on the macronucleus of Paramecium aurelia. I. (With a note on ultraviolet micrography). J Protozool. 1962 May;9:122–131. doi: 10.1111/j.1550-7408.1962.tb02593.x. [DOI] [PubMed] [Google Scholar]
- KRISHAN A., BUCK R. C. STRUCTURE OF THE MITOTIC SPINDLE IN L STRAIN FIBROBLASTS. J Cell Biol. 1965 Mar;24:433–444. doi: 10.1083/jcb.24.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTH L. E., DANIELS E. W. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J Cell Biol. 1962 Jan;12:57–78. doi: 10.1083/jcb.12.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTH L. E., SHIGENAKA Y. THE STRUCTURE AND FORMATION OF CILIA AND FILAMENTS IN RUMEN PROTOZOA. J Cell Biol. 1964 Feb;20:249–270. doi: 10.1083/jcb.20.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth L. E., Wilson H. J., Chakraborty J. Anaphase structure in mitotic cells typified by spindle elongation. J Ultrastruct Res. 1966 Mar;14(5):460–483. doi: 10.1016/s0022-5320(66)80076-x. [DOI] [PubMed] [Google Scholar]
- Sakai H. Studies on sulfhydryl groups during cell division of sea-urchin eggs. 8. Some properties of mitotic apparatus proteins. Biochim Biophys Acta. 1966 Jan 4;112(1):132–145. doi: 10.1016/s0926-6585(96)90015-1. [DOI] [PubMed] [Google Scholar]
- Taylor A. C. Microtubules in the microspikes and cortical cytoplasm of isolated cells. J Cell Biol. 1966 Feb;28(2):155–168. doi: 10.1083/jcb.28.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]