Abstract
The effect of colchicine and other antimitotic drugs was studied in cultures of 11-day chick embryo breast muscle. Exposure of such cultures to 10-6 M colchicine results in fragmentation of the elongate myotubes into rounded, cytoplasmic sacs (myosacs) containing various numbers of nuclei. Comparison of the dose-response relation between myotube fragmentation and metaphase arrest suggests that the underlying mechanism may be similar in both cases. Low temperature does not duplicate the effects of colchicine. Glycerinated myotubes are not affected by the mitotic inhibitors. The effect of colchicine on myotubes is reversible. Myosacs elongate within several days after removal from colchicine. However, the regenerated myotubes fail to incorporate additional mononucleated cells. Colchicine does not interfere with the process of fusion itself, but the metaphase block prevents cells from entering that phase of the cell cycle during which fusion can occur. Cells arrested in mitosis by colchicine do not recover when incubated in normal medium. Colcemid-induced arrest is reversible and does not prevent subsequent fusion of the cells.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANGEVINE J. B., Jr Nerve destruction by colchicine in mice and golden hamsters. J Exp Zool. 1957 Nov;136(2):363–391. doi: 10.1002/jez.1401360209. [DOI] [PubMed] [Google Scholar]
- BEHNKE O. A PRELIMINARY REPORT ON "MICROTUBULES" IN UNDIFFERENTIATED AND DIFFERENTIATED VERTEBRATE CELLS. J Ultrastruct Res. 1964 Aug;11:139–146. doi: 10.1016/s0022-5320(64)80098-8. [DOI] [PubMed] [Google Scholar]
- BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALES S. ASSOCIATION BETWEEN THE SPINDLE APPARATUS AND REOVIRUS. Proc Natl Acad Sci U S A. 1963 Aug;50:268–275. doi: 10.1073/pnas.50.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GELFANT S. INHIBITION OF CELL DIVISION: A CRITICAL AND EXPERIMENTAL ANALYSIS. Int Rev Cytol. 1963;14:1–39. doi: 10.1016/s0074-7696(08)60020-0. [DOI] [PubMed] [Google Scholar]
- GODMAN G. C., MURRAY M. R. Influence of colchicine on the form of skeletal muscle in tissue culture. Proc Soc Exp Biol Med. 1953 Dec;84(3):668–672. doi: 10.3181/00379727-84-20746. [DOI] [PubMed] [Google Scholar]
- GODMAN G. C. The effect of colchicine on striated muscle in tissue culture. Exp Cell Res. 1955 Jun;8(3):488–499. doi: 10.1016/0014-4827(55)90125-7. [DOI] [PubMed] [Google Scholar]
- Gall J. G. Microtubule fine structure. J Cell Biol. 1966 Dec;31(3):639–643. doi: 10.1083/jcb.31.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George P., Journey L. J., Goldstein M. N. Effect of vincristine on the fine structure of HeLa cells during mitosis. J Natl Cancer Inst. 1965 Aug;35(2):355–375. [PubMed] [Google Scholar]
- HOFFMAN H. Acceleration and retardation of the process of axon-sprouting in partially devervated muscles. Aust J Exp Biol Med Sci. 1952 Dec;30(6):541–566. doi: 10.1038/icb.1952.52. [DOI] [PubMed] [Google Scholar]
- KONIGSBERG I. R. Clonal analysis of myogenesis. Science. 1963 Jun 21;140(3573):1273–1284. doi: 10.1126/science.140.3573.1273. [DOI] [PubMed] [Google Scholar]
- Kleinfeld R. G., Sisken J. E. Morphological and kinetic aspects of mitotic arrest by and recovery from colcemid. J Cell Biol. 1966 Dec;31(3):369–379. doi: 10.1083/jcb.31.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MALAWISTA S. E. ON THE ACTION OF COLCHICINE, THE MELANOCYTE MODEL. J Exp Med. 1965 Aug 1;122:361–384. doi: 10.1084/jem.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
- Okazaki K., Holtzer H. Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1484–1490. doi: 10.1073/pnas.56.5.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PUCK T. T., STEFFEN J. LIFE CYCLE ANALYSIS OF MAMMALIAN CELLS. I. A METHOD FOR LOCALIZING METABOLIC EVENTS WITHIN THE LIFE CYCLE, AND ITS APPLICATION TO THE ACTION OF COLCEMIDE AND SUBLETHAL DOSES OF X-IRRADIATION. Biophys J. 1963 Sep;3:379–397. doi: 10.1016/s0006-3495(63)86828-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Przybylski R. J., Blumberg J. M. Ultrastructural aspects of myogenesis in the chick. Lab Invest. 1966 May;15(5):836–863. [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
- TAYLOR E. W. THE MECHANISM OF COLCHICINE INHIBITION OF MITOSIS. I. KINETICS OF INHIBITION AND THE BINDING OF H3-COLCHICINE. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:160. doi: 10.1083/jcb.25.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. C. Microtubules in the microspikes and cortical cytoplasm of isolated cells. J Cell Biol. 1966 Feb;28(2):155–168. doi: 10.1083/jcb.28.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]