Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Mar 1;36(3):421–432. doi: 10.1083/jcb.36.3.421

RIBONUCLEOPROTEIN PARTICLES IN THE AMPHIBIAN OOCYTE NUCLEUS

Possible Intermediates in Ribosome Synthesis

M Elizabeth Rogers 1
PMCID: PMC2107375  PMID: 5645543

Abstract

Studies of the sedimentation properties of RNP1 material from the nucleus of the amphibian oocyte have indicated (1) that there are few, if any, 78S ribosomes in the nucleus, (2) that there are smaller particles sedimenting at 50-55S and 30S, and (3) that the larger of these is the precursor of the 60S subunit of the cytoplasmic ribosomes. Although the nature of the 30S material is not completely clear, it probably includes precursor particles to the 40S ribosomal subunit. Heavy (50-55S) particles are predominant in immature oocytes of Triturus viridescens, whereas in immature oocytes of Triturus and Amblystoma mexicanum they are reduced greatly in amount, but are still detectable. Double-labeling studies of RNA and protein reveal that both types of particle incorporate uridine-3H, but that the 50-55S material of immature oocytes does not incorporate 14C-labeled amino acids. However, other evidence exists that favors the RNP nature of this material. Sedimentation analyses after SDS extraction show that 50-55S particles contain 40 and 30S RNA, whereas 30S particles contain 20S RNA. These types of RNA represent at least 80% of all the extractable nuclear RNA. The 50-55S particles are probably heterogeneous, including both particles containing mostly 40S RNA and particles containing only 30S RNA.

Full Text

The Full Text of this article is available as a PDF (644.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRNSTIEL M. L., CHIPCHASE M. I., HYDE B. B. THE NUCLEOLUS, A SOURCE OF RIBOSOMES. Biochim Biophys Acta. 1963 Nov 22;76:454–462. [PubMed] [Google Scholar]
  2. BROWN D. D., GURDON J. B. ABSENCE OF RIBOSOMAL RNA SYNTHESIS IN THE ANUCLEOLATE MUTANT OF XENOPUS LAEVIS. Proc Natl Acad Sci U S A. 1964 Jan;51:139–146. doi: 10.1073/pnas.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
  4. BROWN D. D., LITTNA E. VARIATIONS IN THE SYNTHESIS OF STABLE RNA'S DURING OOGENESIS AND DEVELOPMENT OF XENOPUS LAEVIS. J Mol Biol. 1964 May;8:688–695. doi: 10.1016/s0022-2836(64)80117-0. [DOI] [PubMed] [Google Scholar]
  5. Brown D. D., Littna E. Synthesis and accumulation of low molecular weight RNA during embryogenesis of Xenopus laevis. J Mol Biol. 1966 Sep;20(1):95–112. doi: 10.1016/0022-2836(66)90120-3. [DOI] [PubMed] [Google Scholar]
  6. CHAO F. C. Dissociation of macromolecular ribonucleoprotein of yeast. Arch Biochem Biophys. 1957 Aug;70(2):426–431. doi: 10.1016/0003-9861(57)90130-3. [DOI] [PubMed] [Google Scholar]
  7. Callan H. G. Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J Cell Sci. 1966 Mar;1(1):85–108. doi: 10.1242/jcs.1.1.85. [DOI] [PubMed] [Google Scholar]
  8. Edström J. E., Daneholt B. Sedimentation properties of the newly synthesized RNA from isolated nuclear components of Chironomus tentans salivary gland cells. J Mol Biol. 1967 Sep 14;28(2):331–343. doi: 10.1016/s0022-2836(67)80013-5. [DOI] [PubMed] [Google Scholar]
  9. FICQ A. Etude autoradiographique dumétabolisme des protéines et des acides nucléiques au cours de l'oogénèse chez les batraciens. Exp Cell Res. 1955 Oct;9(2):286–293. doi: 10.1016/0014-4827(55)90101-4. [DOI] [PubMed] [Google Scholar]
  10. GIRARD M., PENMAN S., DARNELL J. E. THE EFFECT OF ACTINOMYCIN ON RIBOSOME FORMATION IN HELA CELLS. Proc Natl Acad Sci U S A. 1964 Feb;51:205–211. doi: 10.1073/pnas.51.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gall J. G. Nuclear RNA of the salamander oocyte. Natl Cancer Inst Monogr. 1966 Dec;23:475–488. [PubMed] [Google Scholar]
  12. LAFONTAINE J. G. Structure and mode of formation of the nucleolus in meristematic cells of Vicia faba and Allium cepa. J Biophys Biochem Cytol. 1958 Nov 25;4(6):777–784. doi: 10.1083/jcb.4.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lane N. J. Spheroidal and ring nucleoli in amphibian oocytes. Patterns of uridine incorporation and fine structural features. J Cell Biol. 1967 Nov;35(2):421–434. doi: 10.1083/jcb.35.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller O. L., Jr Structure and composition of peripheral nucleoli of salamander oocytes. Natl Cancer Inst Monogr. 1966 Dec;23:53–66. [PubMed] [Google Scholar]
  15. PERRY R. P. ROLE OF THE NUCLEOLUS IN RIBONUCLEIC ACID METABOLISM AND OTHER CELLULAR PROCESSES. Natl Cancer Inst Monogr. 1964 May;14:73–89. [PubMed] [Google Scholar]
  16. PERRY R. P., SRINIVASAN P. R., KELLEY D. E. HYBRIDIZATION OF RAPIDLY LABELED NUCLEAR RIBONUCLEIC ACIDS. Science. 1964 Jul 31;145(3631):504–507. doi: 10.1126/science.145.3631.504. [DOI] [PubMed] [Google Scholar]
  17. Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
  18. Penman S., Smith I., Holtzman E. Ribosomal RNA synthesis and processing in a particulate site in the HeLa cell nucleus. Science. 1966 Nov 11;154(3750):786–789. doi: 10.1126/science.154.3750.786. [DOI] [PubMed] [Google Scholar]
  19. Perry R. P. THE CELLULAR SITES OF SYNTHESIS OF RIBOSOMAL AND 4S RNA. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2179–2186. doi: 10.1073/pnas.48.12.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perry R. P. The nucleolus and the synthesis of ribosomes. Natl Cancer Inst Monogr. 1965 Dec;18:325–340. [PubMed] [Google Scholar]
  21. SCHERRER K., DARNELL J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem Biophys Res Commun. 1962 Jun 4;7:486–490. doi: 10.1016/0006-291x(62)90341-8. [DOI] [PubMed] [Google Scholar]
  22. SCHERRER K., LATHAM H., DARNELL J. E. Demonstration of an unstable RNA and of a precursor to ribosomal RNA in HeLa cells. Proc Natl Acad Sci U S A. 1963 Feb 15;49:240–248. doi: 10.1073/pnas.49.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
  24. TASHIRO Y., SIEKEVITZ P. ULTRACENTRIFUGAL STUDIES ON THE DISSOCIATION OF HEPATIC RIBOSOMES. J Mol Biol. 1965 Feb;11:149–165. doi: 10.1016/s0022-2836(65)80047-x. [DOI] [PubMed] [Google Scholar]
  25. Tamaoki T. The particulate fraction containing 45 s RNA in L cell nuclei. J Mol Biol. 1966 Feb;15(2):624–639. doi: 10.1016/s0022-2836(66)80132-8. [DOI] [PubMed] [Google Scholar]
  26. Vincent W. S., Baltus E., Lovlie A., Mundell R. E. Proteins and nucleic acids of starfish oocyte nucleoli and ribosomes. Natl Cancer Inst Monogr. 1966 Dec;23:235–253. [PubMed] [Google Scholar]
  27. Weinberg R. A., Loening U., Willems M., Penman S. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1088–1095. doi: 10.1073/pnas.58.3.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES