Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 Apr 1;37(1):81–88. doi: 10.1083/jcb.37.1.81

ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

II. NAD- and NADP-Dependent Glutamic Dehydrogenases and Nicotinamide Adenine Dinucleotidase

G J Stine 1
PMCID: PMC2107394  PMID: 4384627

Abstract

Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged.

Full Text

The Full Text of this article is available as a PDF (561.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRATT R. W. EFFECT OF ENVIRONMENTAL CONDITIONS ON THE NADP-SPECIFIC GLUTAMIC ACID DEHYDROGENASE IN NEUROSPORA CRASSA. J Gen Microbiol. 1963 Oct;33:33–42. doi: 10.1099/00221287-33-1-33. [DOI] [PubMed] [Google Scholar]
  2. Bekierkunst A. Nicotinamide-adenine dinucleotide in tubercle bacilli exposed to isoniazid. Science. 1966 Apr 22;152(3721):525–526. doi: 10.1126/science.152.3721.525. [DOI] [PubMed] [Google Scholar]
  3. GORINI L. Symposium on multiple forms of enzymes and control mechanisms. III. Control by repression of a biochemical pathway. Bacteriol Rev. 1963 Jun;27:182–190. doi: 10.1128/br.27.2.182-190.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KAPLAN N. O., COLOWICK S. P., NASON A. Neurospora diphosphopyridine nucleotidase. J Biol Chem. 1951 Aug;191(2):473–483. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. McIlwain H., Rodnight R. Breakdown of cozymase by a system from nervous tissue. Biochem J. 1949;44(4):470–477. doi: 10.1042/bj0440470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SANWAL B. D., LATA M. Concurrent regulation of glutamic acid dehydrogenases of Neurospora. Arch Biochem Biophys. 1962 Jun;97:582–588. doi: 10.1016/0003-9861(62)90127-3. [DOI] [PubMed] [Google Scholar]
  8. SANWAL B. D., LATA M. Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora. Biochem Biophys Res Commun. 1962 Jan 24;6:404–409. doi: 10.1016/0006-291x(62)90364-9. [DOI] [PubMed] [Google Scholar]
  9. SANWAL B. D., LATA M. Glutamic dehydrogenase in single-gene mutants of Neurospora deficient in amination. Nature. 1961 Apr 15;190:286–287. doi: 10.1038/190286a0. [DOI] [PubMed] [Google Scholar]
  10. STICKLAND L. H. The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol. 1951 Oct;5(4):698–703. doi: 10.1099/00221287-5-4-698. [DOI] [PubMed] [Google Scholar]
  11. Stine G. J., Clark A. M. Synchronous production of conidiophores and conidia of Neurospora crassa. Can J Microbiol. 1967 May;13(5):447–453. doi: 10.1139/m67-060. [DOI] [PubMed] [Google Scholar]
  12. Stine G. J. Enzyme activities during the asexual cycle of Neurospora crassa. I. Succinic dehydrogenase. Can J Microbiol. 1967 Sep;13(9):1203–1210. doi: 10.1139/m67-165. [DOI] [PubMed] [Google Scholar]
  13. WEISS B. AN ELECTRON MICROSCOPE AND BIOCHEMICAL STUDY OF NEUROSPORA CRASSA DURING DEVELOPMENT. J Gen Microbiol. 1965 Apr;39:85–94. doi: 10.1099/00221287-39-1-85. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES