Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1968 May 1;37(2):207–220. doi: 10.1083/jcb.37.2.207

THE BIOGENESIS OF MITOCHONDRIA

II. The Influence of Medium Composition on the Cytology of Anaerobically Grown Saccharomyces cerevisiae

P G Wallace 1, M Huang 1, Anthony W Linnane 1
PMCID: PMC2107403  PMID: 5656393

Abstract

Yeast cells grown anaerobically have been shown to vary in their ultrastructure and absorption spectrum depending upon the composition of the growth medium. The changes observed in the anaerobically grown cells are governed by the availability of unsaturated fatty acids and ergosterol and a catabolite or glucose repression. All the cells contain nuclear and plasma membranes, but the extent of the occurrence of vacuolar and mitochondrial membranes varies greatly with the growth conditions. Cells grown anaerobically on the least nutritive medium, composed of 0.5% Difco yeast extract-5% glucose-inorganic salts (YE-G), appear to contain little vacuolar membrane and no clearly recognizable mitochondrial profiles. Cells grown anaerobically on the YE-G medium supplemented with Tween 80 and ergosterol contain clearly recognizable vacuolar membrane and some mitochondrial profiles, albeit rather poorly defined. Cells grown on YE-G medium supplemented only with Tween 80 are characterized by the presence of large amounts of cytoplasmic membrane in addition to vacuolar membrane and perhaps some primitive mitochondrial profiles. When galactose replaces glucose as the major carbon source in the medium, the mitochondrial profiles within the cytoplasm become more clearly recognizable and their number increases. In aerobically grown cells, the catabolite repression also operates to reduce the total number of mitochondrial profiles. The possibility is discussed that cells grown anaerobically on the YE-G medium may not contain mitochondrial membrane and, therefore, that such cells, on aeration, form mitochondrial membrane from nonmitochondrial sources. A wide variety of absorption compounds is observed in anaerobically grown cells which do not correspond to any of the classical aerobic yeast cytochromes. The number and relative proportions of these anaerobic compounds depend upon the composition of the growth medium, the most complex spectrum being found in cells grown in the absence of lipid supplements.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGAR H. D., DOUGLAS H. C. Studies on the cytological structure of yeast: electron microscopy of thin sections. J Bacteriol. 1957 Mar;73(3):365–375. doi: 10.1128/jb.73.3.365-375.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  3. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  4. CONTI S. F., NAYLOR H. B. Electron microscopy of ultrathin sections of Schizosaccharomyces octosporus. II. Morphological and cytological changes preceding ascospore formation. J Bacteriol. 1960 Mar;79:331–340. doi: 10.1128/jb.79.3.331-340.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREDERIC J. Recherches cytologiques sur le chondriome normal ou soumis à l'expérimentation dans des cellules vivantes cultivées in vitro. Arch Biol (Liege) 1958;69(2):167–349. [PubMed] [Google Scholar]
  7. Green D. E., Bachmann E., Allmann D. W., Perdue J. F. The membrane systems of the mitochondrion. III. The isolation and properties of the outer membrane of beef heart mitochondria. Arch Biochem Biophys. 1966 Jul;115(1):172–180. doi: 10.1016/s0003-9861(66)81053-6. [DOI] [PubMed] [Google Scholar]
  8. HASHIMOTO T., CONTI S. F., NAYLOR H. B. Studies of the fine structure of microorganisms. IV. Observations on budding Saccharomyces cerevisiae by light and electron microscopy. J Bacteriol. 1959 Mar;77(3):344–354. doi: 10.1128/jb.77.3.344-354.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HIRANO T., LINDEGREN C. C. Electron microscopy of mitochondrial changes in Saccharomyces. J Ultrastruct Res. 1963 Apr;8:322–326. doi: 10.1016/s0022-5320(63)90010-8. [DOI] [PubMed] [Google Scholar]
  10. Huang M., Biggs D. R., Clark-Walker G. D., Linnane A. W. Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim Biophys Acta. 1966 Feb 21;114(2):434–436. doi: 10.1016/0005-2787(66)90330-3. [DOI] [PubMed] [Google Scholar]
  11. Jayaraman J., Cotman C., Mahler H. R., Sharp C. W. Biochemical correlates of respiratory deficiency. VII. Glucose repression. Arch Biochem Biophys. 1966 Sep 26;116(1):224–251. doi: 10.1016/0003-9861(66)90029-4. [DOI] [PubMed] [Google Scholar]
  12. Jollow D., Kellerman G. M., Linnane A. W. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J Cell Biol. 1968 May;37(2):221–230. doi: 10.1083/jcb.37.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LINDENMAYER A., ESTABROOK R. W. Low-temperature spectral studies on the biosynthesis of cytochromes in Baker's yeast. Arch Biochem Biophys. 1958 Nov;78(1):66–82. doi: 10.1016/0003-9861(58)90315-1. [DOI] [PubMed] [Google Scholar]
  14. LINDENMAYER A., SMITH L. CYTOCHROMES AND OTHER PIGMENTS OF BAKER'S YEAST GROWN AEROBICALLY AND ANAEROBICALLY. Biochim Biophys Acta. 1964 Dec 9;93:445–461. doi: 10.1016/0304-4165(64)90329-0. [DOI] [PubMed] [Google Scholar]
  15. LINNANE A. W., STILL J. L. The isolation of respiring mitochondria from Baker's yeast. Arch Biochem Biophys. 1955 Dec;59(2):383–392. doi: 10.1016/0003-9861(55)90505-1. [DOI] [PubMed] [Google Scholar]
  16. LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LUCK D. J. Genesis of mitochondria in neurospora crassa. Proc Natl Acad Sci U S A. 1963 Feb 15;49:233–240. doi: 10.1073/pnas.49.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MORPURGO G., SERLUPI-CRESCENZI G., TECCE G., VALENTE F., VENETTACCI D. INFLUENCE OF ERGOSTEROL ON THE PHYSIOLOGY AND THE ULTRA-STRUCTURE OF SACCHAROMYCES CEREVISIAE. Nature. 1964 Feb 29;201:897–899. doi: 10.1038/201897a0. [DOI] [PubMed] [Google Scholar]
  19. Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
  20. Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Somlo M., Fukuhara H. On the necessity of molecular oxygen for the synthesis of respiratory enzymes in yeast. Biochem Biophys Res Commun. 1965 May 18;19(5):587–591. doi: 10.1016/0006-291x(65)90379-7. [DOI] [PubMed] [Google Scholar]
  22. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tustanoff E. R., Bartley W. Development of respiration in yeast grown anaerobically on different carbon sources. Biochem J. 1964 Jun;91(3):595–600. doi: 10.1042/bj0910595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. VITOLS E., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. II. Morphology and oxidative phosphorylation capacity of mitochondria and derived particles from baker's yeast. J Biophys Biochem Cytol. 1961 Mar;9:701–710. doi: 10.1083/jcb.9.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. VITOLS E., NORTH R. J., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell. J Biophys Biochem Cytol. 1961 Mar;9:689–699. doi: 10.1083/jcb.9.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WALLACE P. G., LINNANE A. W. OXYGEN-INDUCED SYNTHESIS OF YEAST MITOCHONDRIA. Nature. 1964 Mar 21;201:1191–1194. doi: 10.1038/2011191a0. [DOI] [PubMed] [Google Scholar]
  27. YOTSUYANAGI Y. [Study of yeast mitochondria. II. Mitochondria of respiration-deficient mutants]. J Ultrastruct Res. 1962 Aug;7:141–158. doi: 10.1016/s0022-5320(62)80032-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES