Abstract
The wall of the blood capillaries of skeletal muscles (diaphragm, tongue, hind legs) and myocardium of the rat, guinea pig, and hamster consists of three consecutive layers or tunics: the endothelium (inner layer), the basement membrane with its associated pericytes (middle layer), and the adventitia (outer layer). The flattened cells of the endothelium have a characteristic, large population of cytoplasmic vesicles which, within the attenuated periphery of the cells, may attain a maximum frequency of 120/µ2 of cell front and occupy ∼18% of the cytoplasmic volume; these values decrease as the cells thicken toward the perikaryon. The vesicles are 650–750 A in over-all diameter and are bounded by typical unit membranes. They occur as single units or are fused to form short chains of two to three vesicles. Each configuration may lie entirely within the cytoplasm or open onto the cell surface. In the latter case, the unit membrane of the vesicle is continuous, layer by layer, with the plasmalemma. Chains of vesicles opening simultaneously on both the blood and tissue fronts of the endothelial tunic have not been observed either in sections or in a tridimensional reconstruction of a sector of endothelial cell cytoplasm. Adjacent endothelial cells are closely apposed to one another and appear to be joined over a large part of their margins, possibly over their entire perimeter, by narrow belts of membrane fusion (zonulae occludentes). Except for tongue capillaries, patent intercellular gaps are rare or absent. The middle layer is formed by a continuous basement membrane (∼500 A thick) and by pericytes which lie in between leaflets of this membrane. The tips of the pericyte pseudopodia penetrate through the inner leaflet of the basement membrane and join the endothelium in maculae occludentes. The adventitia is a discontinuous layer comprising cellular (macrophages, fibroblasts, mast cells) and extracellular (fibrils, amorphous matrix) elements. The same general type of construction appears to be used along the entire length of the capillary.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENNETT H. S., LUFT J. H., HAMPTON J. C. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959 Feb;196(2):381–390. doi: 10.1152/ajplegacy.1959.196.2.381. [DOI] [PubMed] [Google Scholar]
- BENNETT M. V., ALJURE E., NAKAJIMA Y., PAPPAS G. D. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science. 1963 Jul 19;141(3577):262–264. doi: 10.1126/science.141.3577.262. [DOI] [PubMed] [Google Scholar]
- Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A., Hirsch J. G., Fedorko M. E. The in vitro differentiation of mononuclear phagocytes. IV. The ultrastructure of macrophage differentiation in the peritoneal cavity and in culture. J Exp Med. 1966 Apr 1;123(4):747–756. doi: 10.1084/jem.123.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DISCHE R. M., PAPPAS G. D., GRAUER A., DISCHE Z. THE CARBOHYDRATE OF BASEMENT MEMBRANES OF HUMAN KIDNEY GLOMERULI. Biochem Biophys Res Commun. 1965 Jun 18;20:63–70. doi: 10.1016/0006-291x(65)90951-4. [DOI] [PubMed] [Google Scholar]
- DROCHMANS P. [Morphology of glycogen. Electron microscopic study of the negative stains of particulate glycogen]. J Ultrastruct Res. 1962 Apr;6:141–163. doi: 10.1016/s0022-5320(62)90050-3. [DOI] [PubMed] [Google Scholar]
- Elfvin L. G. The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J Ultrastruct Res. 1965 Jun;12(5):687–704. doi: 10.1016/s0022-5320(65)80056-9. [DOI] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., WISSIG S. L., PALADE G. E. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med. 1961 Jan 1;113:47–66. doi: 10.1084/jem.113.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAWCETT D. W. Intercellular bridges. Exp Cell Res. 1961;Suppl 8:174–187. doi: 10.1016/0014-4827(61)90347-0. [DOI] [PubMed] [Google Scholar]
- FAWCETT D. W. Physiologically significant specializations of the cell surface. Circulation. 1962 Nov;26:1105–1132. doi: 10.1161/01.cir.26.5.1105. [DOI] [PubMed] [Google Scholar]
- FERNANDO N. V., MOVAT H. Z. THE FINE STRUCTURE OF CONNECTIVE TISSUE. III. THE MAST CELL. Exp Mol Pathol. 1963 Oct;31:450–463. doi: 10.1016/0014-4800(63)90022-4. [DOI] [PubMed] [Google Scholar]
- FERNANDO N. V., MOVAT H. Z. THE FINE STRUCTURE OF THE TERMINAL VASCULAR BED. III. THE CAPILLARIES. Exp Mol Pathol. 1964 Apr;34:87–97. doi: 10.1016/0014-4800(64)90043-7. [DOI] [PubMed] [Google Scholar]
- FLOREY H. W., POOLE J. C., MEEK G. A. Endothelial cells and cement lines. J Pathol Bacteriol. 1959 Apr;77(2):625–636. doi: 10.1002/path.1700770234. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMA K. On the existence of filamentous structures in endothelial cells of the amphibian capillary. Anat Rec. 1961 Mar;139:437–441. doi: 10.1002/ar.1091390313. [DOI] [PubMed] [Google Scholar]
- HURLEY J. V., XEROS N. Electron microscopic observations on the emigration of leucocytes. Aust J Exp Biol Med Sci. 1961 Dec;39:609–623. doi: 10.1038/icb.1961.60. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARRER H. E. An electron microscope study of the aorta in young and in aging mice. J Ultrastruct Res. 1961 Mar;5:1–27. doi: 10.1016/s0022-5320(61)80002-6. [DOI] [PubMed] [Google Scholar]
- KARRER H. E. Electron microscopic study of the phagocytosis process in lung. J Biophys Biochem Cytol. 1960 Apr;7:357–366. doi: 10.1083/jcb.7.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARRER H. E. The ultrastructure of mouse lung; general architecture of capillary and alveolar walls. J Biophys Biochem Cytol. 1956 May 25;2(3):241–252. doi: 10.1083/jcb.2.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUWABARA T., COGAN D. G. Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol. 1963 Apr;69:492–502. doi: 10.1001/archopht.1963.00960040498013. [DOI] [PubMed] [Google Scholar]
- Kefalides N. A., Winzler R. J. The chemistry of glomerular basement membrane and its relation to collagen. Biochemistry. 1966 Feb;5(2):702–713. doi: 10.1021/bi00866a043. [DOI] [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
- MACHER E., VOGELL W. [Electron microscopic studies on the skin capillaries]. Dermatologica. 1962;124:110–128. [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARCHESI V. T., FLOREY H. W. Electron micrographic observations on the emigration of leucocytes. Q J Exp Physiol Cogn Med Sci. 1960 Oct;45:343–348. doi: 10.1113/expphysiol.1960.sp001489. [DOI] [PubMed] [Google Scholar]
- MAYNARD E. A., SCHULTZ R. L., PEASE D. C. Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat. 1957 May;100(3):409–433. doi: 10.1002/aja.1001000306. [DOI] [PubMed] [Google Scholar]
- MOORE D. H., RUSKA H. The fine structure of capillaries and small arteries. J Biophys Biochem Cytol. 1957 May 25;3(3):457–462. doi: 10.1083/jcb.3.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOVAT H. Z., FERNANDO N. V. The fine structure of connective tissue. I. The fibroblast. Exp Mol Pathol. 1962 Dec;1:509–534. doi: 10.1016/0014-4800(62)90040-0. [DOI] [PubMed] [Google Scholar]
- MUIR A. R., PETERS A. Quintuple-layered membrane junctions at terminal bars between endothelial cells. J Cell Biol. 1962 Feb;12:443–448. doi: 10.1083/jcb.12.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E. Blood capillaries of the heart and other organs. Circulation. 1961 Aug;24:368–388. doi: 10.1161/01.cir.24.2.368. [DOI] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
- PARSONS D. F. A simple method for obtaining increased contrast in araldite sections by using postfixation staining of tissues with potassium permanganate. J Biophys Biochem Cytol. 1961 Nov;11:492–497. doi: 10.1083/jcb.11.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RENKIN E. M. TRANSPORT OF LARGE MOLECULES ACROSS CAPILLARY WALLS. Physiologist. 1964 Feb;60:13–28. [PubMed] [Google Scholar]
- RHODIN J. A. Fine structure of vascular walls in mammals with special reference to smooth muscle component. Physiol Rev Suppl. 1962 Jul;5:48–87. [PubMed] [Google Scholar]
- RHODIN J. A. The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res. 1962 Apr;6:171–185. doi: 10.1016/s0022-5320(62)90052-7. [DOI] [PubMed] [Google Scholar]
- RHODIN J., DALHAMN T. Electron microscopy of collagen and elastin in lamina propria of the tracheal muscosa of rat. Exp Cell Res. 1955 Oct;9(2):371–375. doi: 10.1016/0014-4827(55)90116-6. [DOI] [PubMed] [Google Scholar]
- ROSENBLUTH J. Contrast between osmium-fixed and permanganate-fixed toad spinal ganglia. J Cell Biol. 1963 Jan;16:143–157. doi: 10.1083/jcb.16.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSS R., BENDITT E. P. Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J Biophys Biochem Cytol. 1961 Dec;11:677–700. doi: 10.1083/jcb.11.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTH T. F., PORTER K. R. YOLK PROTEIN UPTAKE IN THE OOCYTE OF THE MOSQUITO AEDES AEGYPTI. L. J Cell Biol. 1964 Feb;20:313–332. doi: 10.1083/jcb.20.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodin J. A. The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res. 1967 Apr;18(1):181–223. doi: 10.1016/s0022-5320(67)80239-9. [DOI] [PubMed] [Google Scholar]
- SCHOEFL G. I. STUDIES ON INFLAMMATION. III. GROWING CAPILLARIES: THEIR STRUCTURE AND PERMEABILITY. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Nov 8;337:97–141. [PubMed] [Google Scholar]
- SLAUTTERBACK D. B. CYTOPLASMIC MICROTUBULES. I. HYDRA. J Cell Biol. 1963 Aug;18:367–388. doi: 10.1083/jcb.18.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SUTER E. R., MAJNO G. ULTRASTRUCTURE OF THE JOINT CAPSULE IN THE RAT: PRESENCE OF TWO KINDS OF CAPILLARIES. Nature. 1964 May 30;202:920–921. doi: 10.1038/202920b0. [DOI] [PubMed] [Google Scholar]
- THEG D. E. CYTOPLASMIC MICROTUBULES IN DIFFERENT ANIMAL CELLS. J Cell Biol. 1964 Nov;23:265–275. doi: 10.1083/jcb.23.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TORMEY J. M. DIFFERENCES IN MEMBRANE CONFIGURATION BETWEEN OSMIUM TETROXIDE-FIXED AND GLUTARALDEHYDE-FIXED CILIARY EPITHELIUM. J Cell Biol. 1964 Dec;23:658–664. doi: 10.1083/jcb.23.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. The use of carbon films to support tissue sections for electron microscopy. J Biophys Biochem Cytol. 1955 Mar;1(2):183–184. doi: 10.1083/jcb.1.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. Observations on a granule associated with chromatin in the nuclei of cells of rat and mouse. J Cell Biol. 1962 Apr;13:162–167. doi: 10.1083/jcb.13.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIBEL E. R., KNIGHT B. W. A MORPHOMETRIC STUDY ON THE THICKNESS OF THE PULMONARY AIR-BLOOD BARRIER. J Cell Biol. 1964 Jun;21:367–396. doi: 10.1083/jcb.21.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLFF J. [Contributions to the ultrastructure of the capillaries in the normal cerebral cortex]. Z Zellforsch Mikrosk Anat. 1963;60:409–431. [PubMed] [Google Scholar]
- YAMADA E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955 Sep 25;1(5):445–458. doi: 10.1083/jcb.1.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZAMBONI L., PEASE D. C. The vascular bed of red bone marrow. J Ultrastruct Res. 1961 Mar;5:65–85. doi: 10.1016/s0022-5320(61)80006-3. [DOI] [PubMed] [Google Scholar]